设[tex=4.429x1.357]+LHFXdLw8wfK1Tk/KFhZvOLIa2HJse5nfrGRmJsIVbU=[/tex]均是集合[tex=0.786x1.0]b2qHHLl09vpLlE8vYMXmOw==[/tex]的子集,试证:[tex=11.786x3.357]XUElGO/j+GYRxsQyZUayXo2WzAP41eJTVI3LbdLRUbKsdF/0jvtac5uLccpK2/DdyAorcQQh+7cDsPYLRJ0S3WfRlG4SGwpzpHjbJKXYmuasaAjtIBCCZkCbqE2abtNk[/tex].
举一反三
- 设[tex=4.429x1.357]+LHFXdLw8wfK1Tk/KFhZvOLIa2HJse5nfrGRmJsIVbU=[/tex]均是集合[tex=0.786x1.0]b2qHHLl09vpLlE8vYMXmOw==[/tex]的子集,试证:(1) [tex=5.5x2.929]OnWLW8d+ZtxhsizH6T4vCkpIWfRkdLJ+jYhUDyq09GzAmNscVb5RLjxI7OOKAKLnDalQZXDP1xafa0pQJG7Z893y4hC1GY/DIKT50BIJVMg=[/tex];(2) [tex=5.5x2.929]GOTvUnjyQbK7d4CTTxonMlGDq6vfFfEZhDn9c016bmk3/t+j9DWPOuDTqgDpQsw3RBFSFLz5v4QyTGfF0T9pgi7VzzBTYO+GpZeAOiKAnsU=[/tex].
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是 3 阶矩阵,且[tex=2.643x1.357]h0pLE8vvleI3SS/lZLfCsw==[/tex],则[tex=4.143x1.357]TzVoItsLVWI00YVI4rvLQQ==[/tex]( ). 未知类型:{'options': ['2', '-2', '8', '-8'], 'type': 102}
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}