已知 $X$ 和 $Y$ 的联合密度函数为 $f(x,y)=$ $\begin{cases} cxy,& 0\le x\le 1, 0\le y\le 1,\\ 0,& \text{其他},\end{cases}$,则$c=$______ , $P\{X
举一反三
- 设\(D\)是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {x{y^2}} dxdy \) = \( {1 \over 6} \) 。
- 函数$y = \arcsin (2x + 1)<br/>$的定义域为 ( ). A: $\{ \left. x \right| - 1 \le x \le 0\} <br/>$ B: $\{ \left. x \right| - \frac{1}{2} \le x \le 0\} <br/>$ C: $\{ \left. x \right|x \ge - \frac{1}{2}\} <br/>$ D: ${\rm{\{ }}\left. x \right|x \le 0\}<br/>$
- 设D是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| { { x^2} + {y^2} - 1} \right|} d\sigma \) = \( {\pi \over 4} - {1 \over 2} \) 。
- 在其定义区间上连续的函数是( )。 A: \(f(x) = \left\{ {\matrix{ {x\quad ,{\rm{0}} \le x \le {\rm{1}}} \cr {1 - x\quad ,1 < x \le 2} \cr } } \right.\) B: \(f(x) = \left\{ {\matrix{ {x\quad ,0 < x \le 1 } \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) C: \(f(x) = \left\{ {\matrix{ {x\;\quad ,0 \le x < 1} \cr {0\;\quad \quad ,x = 1} \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) D: \(f(x) = \left\{ {\matrix{ { { 1 \over {x - 1}}\quad ,0 \le x \le 1} \cr {0\quad ,1 \le x \le 2} \cr } } \right.\)
- 设\(D\)是由\( - 1 \le x \le 1 \) ,\( 0 \le y \le 2 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| {y - {x^2}} \right|} d\sigma \) = \( { { 45} \over {16}} \) 。