• 2022-06-15
    函数$y = \arcsin (2x + 1)
    $的定义域为 ( ).
    A: $\{ \left. x \right| - 1 \le x \le 0\}
    $
    B: $\{ \left. x \right| - \frac{1}{2} \le x \le 0\}
    $
    C: $\{ \left. x \right|x \ge - \frac{1}{2}\}
    $
    D: ${\rm{\{ }}\left. x \right|x \le 0\}
    $
  • A

    内容

    • 0

      求向量$A = xi + yj + zk$通过闭区域$\Omega = \left\{ {\left( {x,y,z} \right)\left| {0 \le x \le 1,0 \le y \le 1,0 \le z \le 1} \right.} \right\}$的边界曲面流向外侧的通量。 A: 2 B: 3 C: 4 D: 5

    • 1

      设\(D\)是由\( - 1 \le x \le 1 \) ,\( 0 \le y \le 2 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| {y - {x^2}} \right|} d\sigma \) = \( { { 45} \over {16}} \) 。

    • 2

      函数\(f(x) = \left\{ {\matrix{ { { x^2} - 1\;, - 1 \le x < 0} \cr {x\;\quad \;,0 \le x < 1} \cr {2 - x\;\quad ,1 \le x \le 2} \cr } } \right.\)在\(x =\)( )处间断。______

    • 3

      8.下列函数在$x_0=0$处连续的为()。 A: $f(x) = \left\{ {\begin{array}{*{20}{c}}<br/>{{{\rm{e}}^{ - \frac{1}{{{x^2}}}}},\;\;x \ne 0} \\<br/>{0,\;\;\;\;\;x = 0} \\<br/>\end{array}} \right.<br/>$ B: $f(x) = [x]<br/>$ C: $f(x) = {\mathop{\rm sgn}} (\sin x)<br/>$ D: $f(x) = \left\{ {\begin{array}{*{20}{c}}<br/>{\frac{{\sin x}}{{\left| x \right|}},\;\;x \ne 0} \\<br/>{1,\;\;\;\;\;\;\;x = 0} \\<br/>\end{array}} \right.<br/>$

    • 4

      (1). 设 \( F(x) \) 为随机变量 \( X \)<br/>的分布函数,则下列结论正确的是()。 A: \( F(-\infty )=1 \) B: \( F(x)&gt;1 \) C: \( F(x)=P\left\{ {X&gt;x} \right\} \) D: \( 0\le F(x)\le 1 \)