函数$y = \arcsin (2x + 1)
$的定义域为 ( ).
A: $\{ \left. x \right| - 1 \le x \le 0\}
$
B: $\{ \left. x \right| - \frac{1}{2} \le x \le 0\}
$
C: $\{ \left. x \right|x \ge - \frac{1}{2}\}
$
D: ${\rm{\{ }}\left. x \right|x \le 0\}
$
$的定义域为 ( ).
A: $\{ \left. x \right| - 1 \le x \le 0\}
$
B: $\{ \left. x \right| - \frac{1}{2} \le x \le 0\}
$
C: $\{ \left. x \right|x \ge - \frac{1}{2}\}
$
D: ${\rm{\{ }}\left. x \right|x \le 0\}
$
举一反三
- \(\left\{ {\left( {x,y} \right)\left| {2 \le {x^2} + {y^2} \le 4} \right.} \right\}\)是闭区域.
- 在其定义区间上连续的函数是( )。 A: \(f(x) = \left\{ {\matrix{ {x\quad ,{\rm{0}} \le x \le {\rm{1}}} \cr {1 - x\quad ,1 < x \le 2} \cr } } \right.\) B: \(f(x) = \left\{ {\matrix{ {x\quad ,0 < x \le 1 } \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) C: \(f(x) = \left\{ {\matrix{ {x\;\quad ,0 \le x < 1} \cr {0\;\quad \quad ,x = 1} \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) D: \(f(x) = \left\{ {\matrix{ { { 1 \over {x - 1}}\quad ,0 \le x \le 1} \cr {0\quad ,1 \le x \le 2} \cr } } \right.\)
- 函数$z=\arcsin\dfrac{1}{~\sqrt{x+y}~}$的定义域为( ) A: $\left\{(x,y)\left|~x+y\geq<br/>0\right.\right\}$; B: $\left\{(x,y)\left|~x+y\geq<br/>1~\text{或}~x+y\leq<br/>-1 \right.\right\}$; C: $\left\{(x,y)\left|~x+y\geq<br/>1\right.\right\}$; D: $\left\{(x,y)\left|~x+y\geq<br/>\dfrac{4}{~\pi^2~}\right.\right\}$.
- 设\(D = \left\{ {(x,y)\left| { { x^2} + {y^2} \le 9,x \ge 0,y \ge 0} \right.} \right\}\),则\(\int\!\!\!\int\limits_D {(x + 3y)} d\sigma = \)______
- 设D是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| { { x^2} + {y^2} - 1} \right|} d\sigma \) = \( {\pi \over 4} - {1 \over 2} \) 。