举一反三
- 设 3 阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值互不相同,若行列式[tex=3.071x1.286]FYCnFYQQa8C3I+O2sfSSGA==[/tex], 则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩为 A: 0 B: 1 C: 2 D: 3
- 已知3阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值为-1,1,2,求(1)矩阵[tex=5.571x1.286]OQw0X5RQo5/vziR0ICSSmg==[/tex]的特征值;(2)[tex=6.0x1.286]GiUfMyexR+ktDmrZJuZTGw==[/tex]。
- 已知 3 阶矩阵 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的特征值为 1,2,3, 求 [tex=6.929x1.286]74pVMNXvhixCyck9fgI056t88ad50sk7E8vsulFHJqU=[/tex].
- 已知 3 阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值为 1,2,3, 求[tex=6.429x1.286]jxhXgNvATzbJ87z8e6wc8XLM2gFc2YAKxlyHWgqkCl0=[/tex]及[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的伴随矩阵[tex=1.143x1.286]5RYiKdrI8zHIz/vptMSFUA==[/tex]的特征值。
- 设 3 阶实对称矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值为 6、3 、 3, 与特征值 6 对应的特征向量为 [tex=6.929x1.286]P7m89WiGmN+qYSkz4792P+GrblnpfD/w6lXOEvICZQ8=[/tex],求与特征值 3 对应的特征向量。
内容
- 0
设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为 3 阶矩阵,[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值为 0,1,2, 那么齐次线性方程组[tex=3.429x1.286]FF5bUci0HbqKyNGyHKVoog==[/tex]的基础解系所含解向量的个数为 A: 0 B: 1 C: 2 D: 3
- 1
设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为3阶实对称矩阵,如果二次曲面方程[tex=9.143x3.357]DgxfZoqsEh9v6pTrWkD5nCNmbsGuO0SiXGn9kD0NmrAKY2zrufpujPy3CbFK2hQq37JyOtIIKgcoSlyfiv8sP0MPG/GnR5/bau56oxjCsS0=[/tex]在正交变换下的标准方程的图形如图,则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的正特征值个数为[img=518x369]177438702f766bc.png[/img] A: 0 B: 1 C: 2 D: 3
- 2
已知3阶方阵[tex=3.929x1.286]1G8NMgGVlwLDHIdIsrUCU+bMw3f1OfnWxrReLBCS8D4=[/tex]与任意3阶方阵[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]可交换,即[tex=4.357x1.286]hYSGrw5He693xGJsPlhlQQ==[/tex],证明:矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是数量矩阵.
- 3
设[tex=9.857x3.643]r+tiAx6ClSaeP7cZbqpjmbnkGdCev2ihxdtUYYyUpPgFvSbCqWJ8PxMsTHbuUkUNPbowj8CpwjMFO72kUCkt+SKW8J0VeuA8P7qy1G3O50PNK6aNq+DTsIrpPE6RIQby[/tex],求: (1)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的特征值与特征向量;(2)[tex=1.143x1.286]5RYiKdrI8zHIz/vptMSFUA==[/tex]的特征值;(3)[tex=4.643x1.286]nqtzqZxv9ISla0SKnqtlfvU2L2tMm6doOBZNh+zt6+A=[/tex]的特征值。
- 4
设 3 阶实对称矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的各行元素之和都为 3, 向量[tex=8.286x1.286]njUu8qAvhBDUHKNq730Nh/e+7RIusjjuek1uGAbP7ubbdHodbRcNLeFlXIw0nu3S[/tex],[tex=9.071x1.286]xCzbrSO1Dsvf3UMEghvh62BKfZajeih3TIAgVKJ47Kmk3xIvB2vBIl0/R+x039Nd[/tex]都是齐次线性方程组[tex=3.429x1.286]FF5bUci0HbqKyNGyHKVoog==[/tex]的解。(1) 求[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值和特征向量;(2) 求正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]和对角矩阵[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex], 使得[tex=4.857x1.286]rBT5/uNzgbWBBfGRE6xSbwOuiGdAi5ccrp7SXFh1DT4=[/tex]。