• 2022-05-31
    设方程F(x+z,xy,z)=0确定了隐函数z=z(x,y),其中F具有连续一阶偏导数,求δz/...
  • 隐函数求导法则:δz/δx=-(δF/δx)/(δF/δz).δF/δx=F1+y*F2,δF/δz=F1+F3,所以:δz/δx=-(F1+y*F2)/(F1+F3),F1,F2,F3分别是F对第一、二、三个变量的偏导数.同理得δz/δy

    内容

    • 0

      【判断题】设x=x(y, z), y=y(x, z), z=z(x, y)都是由方程F(x, y, z)=0所确定的具有连续偏导数的函数, 则 。() A. 对 B. 错

    • 1

      若方程F(x,y,z)=0确定隐函数关系,若求x对y的偏导数,则说明确定的隐函数关系为x=f(y,z)

    • 2

      设x=x(y,z),y=y(x,z),z=z(x,y)都是由方程F(x,y,z)=0所确定的具有连续偏导数的函数,则。()http://image.zhihuishu.com/zhs/onlineexam/ueditor/201803/218aa0809999447dad3d95dbfeb8067f.png

    • 3

      设方程F(x-z,y-z)=0确定了函数z=z(x,y),F(u,v)具有连续偏导数,且F′u+F′u≠0,则() A: 0 B: 1 C: -1 D: z

    • 4

      设函数z=z(x,y)由方程F(y/x,z/x)=0确定,其中F为可微函数,且F<sub>2</sub>′≠0,则x∂z/∂x+y∂z/∂y=()。 A: x B: z C: -x D: -z