等截面曲杆[tex=1.5x1.0]RlW7nqK9loRKpEZxlhR16g==[/tex]的轴线为四分之三的圆周。若杆[tex=1.571x1.0]JLMbVw4e37VvhkU494+8Ew==[/tex]可视为刚性杆,试求在[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]力作用下,截面[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的水平位移及铅垂位移。[img=318x312]17d80c50c7b6988.png[/img]
举一反三
- 图示水平面内的曲拐,杆[tex=1.571x1.0]JLMbVw4e37VvhkU494+8Ew==[/tex]垂直于杆[tex=1.5x1.0]RlW7nqK9loRKpEZxlhR16g==[/tex],端点[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]上作用集中力[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]。设曲拐两段材料相同且均为同一直径的圆截面杆,试求[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]点的铅垂位移。[img=418x223]17d80c9ab816050.png[/img]
- 图示结构中 ,各杆的拉(压)刚度均为[tex=1.5x1.0]bjPr7N4kHmEffk9ZYih8xg==[/tex]。试求在集中力[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]作用下[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]点的水平和铅垂位移。[img=369x347]17d88a1898cef29.png[/img]
- 图示简易支架中,[tex=1.571x1.0]JLMbVw4e37VvhkU494+8Ew==[/tex]为刚性杆,拉杆[tex=1.571x1.0]NHNK70/hc7O0FSCXm+3W2g==[/tex]的拉压刚度为[tex=1.5x1.0]bjPr7N4kHmEffk9ZYih8xg==[/tex]。试求[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]点的铅垂位移。[img=386x310]17d14cdcb2222cc.png[/img]
- 物体重[tex=4.0x1.0]eP2ymqr6zw2qHFcF42EcyA==[/tex],由三杆[tex=1.571x1.0]JLMbVw4e37VvhkU494+8Ew==[/tex]、[tex=1.5x1.0]RlW7nqK9loRKpEZxlhR16g==[/tex]和[tex=1.5x1.0]tw6cUHXOAIDLYM0PesAPiQ==[/tex]所组成的构架及滑轮[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]支持,如图所示。已知[tex=13.143x1.214]7MuSrfxFpIvLOa2ELfSto8yttS7i7AdOw2pM3U2vNbo=[/tex],不计杆和滑轮重量,求支承[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]和[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的反力以及[tex=1.5x1.0]RlW7nqK9loRKpEZxlhR16g==[/tex]杆的力。[img=184x171]17d08624654cf48.png[/img]
- 图示结构中 ,各杆的横截面面积均为[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex],材料在单轴拉伸情形的应力-应变关系为[tex=3.143x1.357]VlqbHYVtYV0jK3ny9CwjbxH4we5JU0AOR9Mk2rtVvL4rnHuM+U4IjwaoIP6BG4N2[/tex]。试求在集中力[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]作用下[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]点的铅垂位移。[img=753x296]17d88a9272d57f2.png[/img]