求解ax2+bx+c=0方程的根,其中:a=1,b=2,c=3.
A: a=1;b=2;c=3;d=sqrt(b*b-4*a*c)X1=(-b+d)/(2*a)X2=(-b-d)/(2*a)
B: a=1;b=2;c=3;d=sqrt(b*b-4*a*c)X1=(-b+d)/(2*a)X2=(-b-d)/(2*a)
C: a=1;b=2;c=3;d=sqrt(b*b-4*a*c)X1=(-b+-d)/(2*a)
D: a=1;b=2;c=3;d=sqrt(b*b-4*a*c)X1=(-b+d)\(2*a)X2=(-b-d)\(2*a)
A: a=1;b=2;c=3;d=sqrt(b*b-4*a*c)X1=(-b+d)/(2*a)X2=(-b-d)/(2*a)
B: a=1;b=2;c=3;d=sqrt(b*b-4*a*c)X1=(-b+d)/(2*a)X2=(-b-d)/(2*a)
C: a=1;b=2;c=3;d=sqrt(b*b-4*a*c)X1=(-b+-d)/(2*a)
D: a=1;b=2;c=3;d=sqrt(b*b-4*a*c)X1=(-b+d)\(2*a)X2=(-b-d)\(2*a)
举一反三
- 积分[img=136x52]1803d6afd4e6f95.png[/img]的计算程序和结果是 A: clearsyms xy=1/x^2/sqrt(x^2-1)int(y,x,-2,-1)3^(1/2)/2 B: clearsyms xint(1/x^2/sqrt(x^2-1),x,-2,-1)3^(1/2)/2 C: clearsyms xint(1/x/sqrt(x^2-1),x,-2,-1)-pi/3 D: clearsyms xint(1/x/sqrt(x^2-1),x,-2,-1)3^(1/2)/2 E: clearsyms xint(1/x^2*sqrt(x^2-1),x,-2,-1)log(3^(1/2) + 2) - 3^(1/2)/2
- 求函数 f(x)=3*x1^2 + 2*x1*x2 + x2^2 − 4*x1 + 5*x2. 时,输入代码 >>fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2); >>x0 = [1,1]; >>[x,fval] = fminunc(fun,x0); 其中fun的作用是:
- 求函数$y = \root 3 \of {x + \sqrt x } $的导数$y' = $( ) A: ${{1 + 2\sqrt x } \over {\root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ B: $ {{1 + 2\sqrt x } \over {6\root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ C: $ {{1 + 2\sqrt x } \over {6\sqrt x \cdot \root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ D: $ {{1 + 2\sqrt x } \over {\sqrt x \cdot \root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$
- 求函数 f(x)=3*x1^2 + 2*x1*x2 + x2^2 − 4*x1 + 5*x2. 时,输入代码 >>fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2); >>x0 = [1,1]; >>[x,fval] = fminunc(fun,x0); 到matlab上运行一下,得到的结果,x是:
- 函数\(y = {\left( {\arcsin x} \right)^2}\)的导数为( ). A: \(2\arcsin x{1 \over {\sqrt {1 - {x^2}} }}\) B: \( - 2\arcsin x{1 \over {\sqrt {1 - {x^2}} }}\) C: \(2\arcsin x{1 \over {\sqrt {1 + {x^2}} }}\) D: \( - 2\arcsin x{1 \over {\sqrt {1 + {x^2}} }}\)