设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有一个特征值[tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex],求[tex=5.214x1.357]KR27PElEhnOmae67z3tEZQ==[/tex]的一个特征值。
举一反三
- 设 3 阶实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值是[tex=0.5x1.0]AYXQx0BMtpSPsr4BfOe2YQ==[/tex],[tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex],[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]。矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]属于特征值[tex=0.5x1.0]AYXQx0BMtpSPsr4BfOe2YQ==[/tex],[tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex]的特征向量分别是[tex=6.429x1.429]byqQGNzmk3rn5PDy8xu2bJfsHCRTMgFMnGrrZ7X5JxKHs4gVKR6BdN31NZz2HvVX[/tex],[tex=6.429x1.429]5jkLjn+YJPdL+AxBb7dksQnKoiSB4WWTg6LTWWhVQEM=[/tex]求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]属于特征值 3 的特征向量
- 设 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的一个特征值.(1)求 [tex=6.786x1.429]GEUVl9vJyMoBP0kYsKqMRtZf6gqbSM5309Sk1nGUexQ=[/tex] 的一个特征值;(2)若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可逆,求 [tex=8.786x1.429]7Lqpjv7nrdJ0r67Eup8jNGZNIM2UNZuj8DSfvgqlnAE/mhbyNwTbfPyQt74/IE1P[/tex] 的一个特征值.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵,[tex=6.357x1.214]ktGtmiDKstx7m1f25N9jwZT5aYsjOrhIKRDobbavw6Q=[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个特征值,求行列式 [tex=3.357x1.357]m48DvRt0hjjMuVqGpYAvJg==[/tex] 的值.
- 设 4 阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足条件[tex=13.429x1.571]pNXwj7dxoGbcprO3/HATinbMcrt8sC5y1uPd3TRH6ssCiv8WtIXVXb9cSHXuJP20[/tex], 其中[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]为 4 阶单位矩阵,求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的伴随矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有一个特征值。
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级正交矩阵,证明:如果[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有特征值,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值是1或[tex=1.286x1.143]Mj6+lbt3rBoas+xQLVX/oA==[/tex].