设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级正交矩阵,证明:如果[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有特征值,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值是1或[tex=1.286x1.143]Mj6+lbt3rBoas+xQLVX/oA==[/tex].
举一反三
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级正交矩阵,证明:如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数,且[tex=2.643x1.357]2b4bQFAKsSsWrcRvU4LFtQ==[/tex],则1是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的一个特征值.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正交矩阵, 则 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的特征值全是实数', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的特征值的模长等于 1', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0有两两不相等的特征值', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的线性无关的特征向量两两正交'], 'type': 102}
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵,[tex=6.357x1.214]ktGtmiDKstx7m1f25N9jwZT5aYsjOrhIKRDobbavw6Q=[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个特征值,求行列式 [tex=3.357x1.357]m48DvRt0hjjMuVqGpYAvJg==[/tex] 的值.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵且有特征值 1, 又 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 只有一个线性无关的特征向量. 求 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的 Jordan 标准型.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是数域[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]上一个可逆矩阵,证明:如果[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有特征值,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值不等于0.