x趋于0求极限lim2½-(1+cosx)½/(sin3x)^2
原式=limx→0[2-(1+cosx)]/9x^2*limx→01/[(√2+√(1+cosx)],(分子有理化,sin3x~3x替换)=√2/4*limx→0(1-cosx)/9x^2,=√2/4*limx→0sinx/18x,(洛必塔法则求导),=√2/4*1/18=√2/72.
举一反三
内容
- 0
[x^2*sin(1/x^2)]/x的X趋于0的极限,为什么不能用sin(1/x^2)~1/x^2带入.
- 1
lim(cos2x)*x^(3/2)x趋近于0求极限
- 2
\( \lim \limits_{x \to 0} { { \sqrt {1 + x\sin x} - \cos x} \over { { {\sin }^2}{x \over 2}}} = \)______ 。
- 3
\( \lim \limits_{x \to 0} {x^2}\sin {1 \over x} =\)______。______
- 4
\(\lim \limits_{x \to 0} 2 { { \tan x - \sin x} \over { { {\sin }^3}x}}{\rm{ = }}\)______ 。