A: 2*x*sin(1/x) - sin(1/x)
B: 2xsin(1/x) - cos(1/x)
C: 2*x*sin(1/x) - cos(1/x)
D: 2*x*cos(1/x) - cos(1/x)
举一反三
- 求函数[img=192x40]17da653862ff7b6.png[/img]的导数; ( ) A: cos(x)/sin(x) - cot(x)*(cot(x)^2 + 1) B: cos(x)/sin(x) C: cot(x)*(cot(x)^2 + 1) D: cos(x)/sin(x) - cot(x)*(cot(x)^2 + 1)+cot(x)
- 17e0b849d3a4a3b.jpg,计算[img=19x34]17e0ab14a855463.jpg[/img]的实验命令为( ). A: syms x; f=diff((1+sin(x)^2)/cos(x),1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2 B: f=diff((1+sinx^2)/cosx,1)f=1/2/x^(1/2)/(1-x)^(1/2) C: syms x;f=diff((1+sinx^2)/cosx,1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2
- 函数\(y = \sin {1 \over x}\)的导数为( ). A: \({1 \over { { x^2}}}\sin {1 \over x}\) B: \( - {1 \over { { x^2}}}\sin {1 \over x}\) C: \( - {1 \over { { x^2}}}\cos {1 \over x}\) D: \({1 \over { { x^2}}}\cos {1 \over x}\)
- $\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$
- 求微分方程[img=143x21]17da5f14490e50e.png[/img]的通解,实验命令为(). A: dsolve(D2y-2*Dy+5*y=sin(2*x),x)ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x) B: dsolve('D2y-2*Dy+5*y=sin(2*x)','x')ans =cos(2*x)*(sin(4*x)/17 - cos(4*x)/68 + 1/4) - sin(2*x)*(cos(4*x)/17 + sin(4*x)/68) + C1*cos(2*x)*exp(x) - C2*sin(2*x)*exp(x) C: dsolve(D2y-2*Dy+5*y=sin(2*x),'x','y')ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x)
内容
- 0
设[img=335x39]180307330358786.png[/img],画出函数[img=34x25]180307330bcd082.png[/img]和[img=33x25]1803073313a8ced.png[/img]的图形并填实两条曲线之间的区域. A: Plot[{Cos[x]+x/2,Sin[x]+x/3},{x,0,4},Filling→{2→{1}}] B: Plot[{Cos[x]+x/2,Sin[x]+x/3},{x,0,4},Filling→{1→{2}}] C: Plot[{Cos[x]+x/2,Sin[x]+x/3},{x,0,4},Filling→{2→1}] D: Plot[{Cos[x]+x/2,Sin[x]+x/3},{x,0,4},Filling→{1→2}]
- 1
$\int {{{x\cos x} \over {{{\sin }^3}x}}} dx = \left( {} \right)$ A: $ - {x \over {2{{\sin }^2}x}} - {1 \over 2}\tan x + C$ B: $ - {x \over {2{{\sin }^2}x}} - {1 \over 2}\cot x + C$ C: $ - {x \over {2{{\cos }^2}x}} - {1 \over 2}\cot x + C$ D: $ - {x \over {2{{\cos }^2}x}} - {1 \over 2}\tan x + C$
- 2
常微分方程[img=243x26]1802e4d57c1aad8.png[/img]的解为: A: exp(-x)*sin(3^(1/2)*x)*C2+exp(-x)*cos(3^(1/2)*x)*C1-1/4*cos(2*x),C1、C2为任意常数 B: exp(-2x)*cos(3^(1/2)*x)*C2+exp(-2x)*cos(3^(1/2)*x)*C1-1/4*sin(2*x),C1、C2为任意常数 C: exp(-3x)*sin(3^(1/2)*x)*C2+exp(-3x)*sin(3^(1/2)*x)*C1-1/4*sin(2*x),C1、C2为任意常数 D: exp(-4x)*sin(3^(1/2)*x)*C2-exp(-4x)*cos(3^(1/2)*x)*C1-1/4*cos(2*x),C1、C2为任意常数
- 3
【单选题】在 MATLAB 命令窗口中 , 键入命令 syms x ; int(x*sin(x)) 。结果是 A. ans= sin(x)-x*cos(x) B. ans= cos(x)+x*sin(x) C. ans= sin(x)-cos(x) D. ans= -1/2*cos(x)*sin(x)+1/2*x
- 4
\( \lim \limits_{x \to 0} { { \sqrt {1 + x\sin x} - \cos x} \over { { {\sin }^2}{x \over 2}}} = \)______ 。