• 2022-06-03
    如图 10-26 所示, 金属球 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和金属球壳[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]同心放置, 它们原先都不带电。设球 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 的半径为[tex=0.857x1.0]6WwbFXETRyeyXlvAruSoNg==[/tex], 球壳 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 的内、外半径分别 为[tex=0.857x1.0]r+KJ+e34QQG5kQSQgVTrIA==[/tex]和 [tex=0.857x1.0]bbMA7vtlWpi2hQKsdphBgg==[/tex]。求在下列情况下[tex=1.929x1.286]1nS174D6uIjw+uY27d1gKw==[/tex]的电势差:使 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 带[tex=1.286x1.143]XjKdZcMPBzOQweZnPXoVVw==[/tex];[img=138x145]17e2f22347d89c0.png[/img]
  • 使[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 带 [tex=1.286x1.143]XjKdZcMPBzOQweZnPXoVVw==[/tex] : 这时 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 等电势, 所以[tex=7.429x1.214]HjZwkyPsTdBvpslKtwire1R3tE0sl3irtq2y/GiUUIhX1uxm3reloO0XAH+RAw/R[/tex]

    举一反三

    内容

    • 0

      以向量 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 为边作平行四边形,试用 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 与 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 表示 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 边上的高向量.

    • 1

      设 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 是单位向量,证明 [tex=1.786x1.143]+JWM/sEBO49/oaEmZ4MdCQ==[/tex] 平分 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]与 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 的夹角.

    • 2

      以向量 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 与[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]为边作平行四边形,试用[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]与 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]表示 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]边上的高向量.

    • 3

      用真值表法和主析取范式法证明下面推理不正确. [br][/br]       如果[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]之积是负数,则 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和  [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]中恰有一个是负数.a 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]之积不是负数.所以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 都不 是负数.

    • 4

      设有非零向量[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex],[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex],[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex],如果 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex],[tex=2.214x1.143]0r4yD2FUhMBrZI0Ja3cQ+A==[/tex],[tex=4.643x1.357]mYudu4hCS+Lfb4CA1kmzuk0JsvuG1VzazALUYw0OIQ8=[/tex] 共面,问[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex],[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex],[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex]有什么关系?