求解偏微分方程[img=178x28]18030731a73d552.png[/img], 应用的语句是
A: DSolve[(x^2+y^2)D[u,x]+x yD[u,y]==0,u,{x,y}]
B: DSolve[(x^2+y^2)Dt[u[x,y],x]+xyDt[u[x,y],y]==0,u[x,y],{x,y}]
C: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y]]
D: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y],{x,y}]
A: DSolve[(x^2+y^2)D[u,x]+x yD[u,y]==0,u,{x,y}]
B: DSolve[(x^2+y^2)Dt[u[x,y],x]+xyDt[u[x,y],y]==0,u[x,y],{x,y}]
C: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y]]
D: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y],{x,y}]
举一反三
- 以下哪个效用函数里的商品x和y不都是“越多越好”? A: U(x,y)=x^2·y B: U(x,y)=x+y C: U(x,y)=x·y^(1/2) D: U(x,y)=x/y
- 求解常微分方程初值问题[img=224x61]1803072f6b2a05a.png[/img]应用的语句是 A: DSolve[2y[x]y"[x]==1+(y'[x])^2,y[0]==1,y'[0]==0,y[x],x B: DSolve[{2y[x]y" [x]==1+(y'[x])^2,y[0]==1,y'[0]==0},y[x],x] C: DSolve[{2y[x]y" [x]==1+(y^' [x])^2;y[0]==1;y'[0]==0},y[x],x] D: DSolve[{2yy"==1+(y^' )^2&&y[0]==1&&y'[0]==0},y[x],x]
- 随机变量X~U(-a,a),a>;0,则Y=|X|的概率分布为 A: Y~U(0,a) B: Y~U(0,2a) C: Y~U(0,a/2) D: Y~U(0,1)
- 【判断题】设 X ~ U(0, 1), Y ~ U(0, 1),且 X,Y 独立,则 X + Y ~ U(0, 2). A. 对 B. 错
- 设X~U(0,1),Y~U(0,1),且X与Y独立,(1)计算Emax(X,Y).(2)计算Emin(X,Y).