(2) 已知随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=14.143x2.429]rPv0VD0uSHilk9kRx82SkKUsT9+CME96kfKrw4zwSnHKEi9fkEY1mwshBWY6F9MxvWvSqAtGr93+vx+Sv5YCow==[/tex] ,已知 [tex=6.429x2.857]lTo3Yo+lNUaT2N1ZBOgh3NVpbeJJn+pLUqemQIOzJLSjjP2NRYEWYVSHC91vQ1Ry[/tex],求[tex=1.357x1.071]kctUt+db+bKYechGERK5Cg==[/tex] 的概率密度
举一反三
- 已知随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的联合概率分布为[img=840x92]178f2e157cdbead.png[/img]试求:(1)[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布;(2) [tex=2.214x1.143]tkk4aXcDoKeg9ZsIAK+yrQ==[/tex]的概率分布;(3) [tex=6.857x2.429]RqGV9tRUT6gh1TsLo9YXgRs6mochCT0I/f5RwmC1X0k=[/tex]的数学期望.
- 已知随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=13.0x2.357]nHHN4pLpj1G1uhQpyLUatreMse16BhxCX+nm8cZ5nxW1R+KIjomlLFfyrFplv9mykQ0cFIpaQRbRTlU90WEwNA==[/tex]求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数.
- 已知离散型随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布为[img=397x83]178ee6aa0d1a25e.png[/img](1) 写出[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex];(2) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望和方差.
- 设二维随机变量的联合概率密度函数为:[tex=15.929x2.429]a9neBZVmd3fG0ctvwI5Oxjq4tahRNUHDFWrzGhfY3Q0cjRAwaIowsKdF4kv0YlI7cz3ff38MqPwC8cqj7rmFdXzCqzx6ku/IL/JGj3cqUgA=[/tex] 求:随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 至少有一个小于 2 的概率.
- 已知随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从参数为[tex=0.643x1.0]L2Atb4d5eWga5JCvxFtwvQ==[/tex]的泊松分布,[tex=4.857x1.357]F4m+q5YLqz1CpMYzT+XifA==[/tex], 则[tex=2.429x1.357]mcPoV0l2+P69G4jqQuIxgA==[/tex] A: 3 B: 1 C: 2 D: 0