由方程f(y/x,z/x)=0确定z=z(x,y)(f可微),则x∂z/∂x+y∂z/∂y=()。
A: -z
B: z
C: -y
D: y
A: -z
B: z
C: -y
D: y
举一反三
- 设函数z=z(x,y)由方程F(y/x,z/x)=0确定,其中F为可微函数,且F<sub>2</sub>′≠0,则x∂z/∂x+y∂z/∂y=()。 A: x B: z C: -x D: -z
- 设x=x(y,z),y=y(z,x),z=z(x,y)均为由方程f(x,y,z)=0所确定的具有连续偏导数的函数,则x’y·y’z·z’x=______.
- 公式"x ( F(x,y,z ) → "y ( G(x,y,z) → "z H(x,y,z) ) )的前束范式为 A: "x$y$z (F(x,t,w) → ( G(x,y,w ) → H(x,y,z) ) ) B: $x$y$z (F(x,t,w) → ( G(x,y,w ) → H(x,y,z) ) ) C: "x"y$z (F(x,t,w) → ( G(x,y,w ) → H(x,y,z) ) ) D: "x$y"z (F(x,t,w) → ( G(x,y,w ) → H(x,y,z) ) )
- 设x=x(y,z),y=y(x,z),z=z(x,y)都是由方程F(x,y,z)=0所确定的具有连续偏导数的函数,则=(). A: 0 B: -1 C: 2 D: 1
- 设z=z(x,y), y=y(x,z), x=x(y,z)都是由方程 F (x,y,z)=0确定的具有一阶连续偏导数的二元函数,则[img=102x47]18036fdb6dacf56.png[/img]