求极限\( \lim \limits_{x \to {0^{\rm{ + }}}} {\left( {\cot x} \right)^{\sin x}}{\rm{ = }}\)__________
举一反三
- 求极限\( \lim \limits_{x \to 0} { { {x^2}\sin {1 \over x}} \over {\sin x}}{\rm{ = }}\)______
- \(\lim \limits_{x \to 1} { { \sin \left( { { x^2} - 1} \right)} \over {x - 1}}{\rm{ = }}\)______ 。
- \( \lim \limits_{x \to {0^ + }} {\left( {\cot x} \right)^ { { 1 \over {\ln x}}}} \)=_____ ______
- \(\lim \limits_{x \to 0} 2 { { \tan x - \sin x} \over { { {\sin }^3}x}}{\rm{ = }}\)______ 。
- \(\mathop {\lim }\limits_{x \to 0} 2 { { \tan x - \sin x} \over { { {\sin }^3}x}}{\rm{ = }}\)______。______