若[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是连续的奇函数, 证明[tex=4.429x2.643]0fRlWbNJGvj5VdT3U3Vk0pq1w71LRjnEDGes2wEhs9yXo1gekZsfmwJ6VMnBLJGe[/tex]是偶函数;若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是连续的偶函数,证明[tex=4.429x2.643]0fRlWbNJGvj5VdT3U3Vk0pq1w71LRjnEDGes2wEhs9yXo1gekZsfmwJ6VMnBLJGe[/tex]是奇函数。
举一反三
- 设函数 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 有相同的定义域,证明:1)若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 都是偶函数,则[tex=3.714x1.286]ozsp7XPKgBFjOdE7oDnq8Q==[/tex]是偶函数;2)若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 都是奇函数,则[tex=3.714x1.286]ozsp7XPKgBFjOdE7oDnq8Q==[/tex]是偶函数;3)若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] , 一个是偶函数另一个是奇函数,则[tex=3.714x1.286]ozsp7XPKgBFjOdE7oDnq8Q==[/tex]是奇函数。
- 设 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 为连续函数, 求证:(1) 若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 为奇函数, 则 [tex=4.214x2.286]0fRlWbNJGvj5VdT3U3Vk0gsJ0wPKCSLHiIsl69Vu800=[/tex] 是偶函数 ;(2) 若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 为偶函数, 则 [tex=4.214x2.286]0fRlWbNJGvj5VdT3U3Vk0gsJ0wPKCSLHiIsl69Vu800=[/tex] 是奇函数;(3) 奇函数的所有原函数均为偶函数; 偶函数的原函数中只有一个奇函数.
- 证明:若函数 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是奇函数或偶函数,且 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.786x1.286]Fg5IUitkct+ESji8OI4WmA==[/tex] 连续,则函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=3.5x1.286]RlY7z3udff+GPCeq4Wqz1g==[/tex]也连续。
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在其定义域上可导,若[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是偶函数,证明[tex=2.143x1.286]FKq9v1pXcOtjy1Cl2h+pXv4qvrtr57gpoaVePO4m860=[/tex]是奇函数;若[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是奇函数,证明[tex=2.143x1.286]FKq9v1pXcOtjy1Cl2h+pXv4qvrtr57gpoaVePO4m860=[/tex]是偶函数(即求导改变奇偶性)。
- 证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在 0 的邻域是偶函数(奇函数),且[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在 0 存在各阶导数,则[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]的马克劳林公式只含有[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]的偶数次幂(奇数次幂)的项。