设α1=(1,1,2,2)T,α2=(t,t+2,2t+2,2t+4)T,α3=(1,a+1,2a+3,2a+2)T,α4=(-2,-3,2t-9,t-7)T,若()成立,α1,α2,α3,α4线性无关。
A: t=1,且a=-1
B: t=1,或a=-1
C: t≠1,且a≠-1
D: t≠1,或a=-1
A: t=1,且a=-1
B: t=1,或a=-1
C: t≠1,且a≠-1
D: t≠1,或a=-1
举一反三
- 已知α1=(1,2,-1)T,α2=(1,-3,2)T,α3=(4,11,-6)T,若Aα1=(0,2)T,Aα2=(5,2)T,Aα3=(-3,7)T,则A=______。
- 设α1=(1,4,3,-1)T,α2=(2,t,-1,-1)T,α3=(-2,3,1,t+1)T,则 A: 对任意的t,α1,α2,α3必线性无关. B: 仅当t=-3时,α1,α2,α3线性无关. C: 若t=0,则α1,α2,α3线性相关. D: 仅t≠0且t≠-3,α1,α2,α3线性无关.
- 设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T
- 设向量组α1=(1,-1,2,4)T,a2=(0,3,1,2)T,α3=(3,0,7,14)T,α4=(1,-2,2,0)T,α5=(2,1,5,10)T,则向量组α1,α2,α3,α4,α5的最大线性无关组是()。 A: α1,α2,α3 B: α1,α2,α4 C: α1,α4 D: α1,α2,α4,α5
- 已知向量α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T,β1=(1,3,4)T,β2=(1,-1,a)T,且β1可以由α1,α2,α3线性表出,β2不能由α1,α2,α3线性表出,则α=______。