• 2022-06-10
    1、limln(1+x+2x^2)+ln(1-x+x^2)/secx-cosx
  • 答:第一种方法:洛比达法则第二种方法,恒等式变形,用等价无穷小.1(2);2(18×12)

    内容

    • 0

      函数$f(x)=\ln \ln x$的导数是( )。 A: $\frac{1}{x}$ B: $\frac{1}{{{x}^{2}}}$ C: $\frac{1}{\ln x}$ D: $\frac{1}{x\ln x}$

    • 1

      函数\(y = \ln \left( {1 + {x^2}} \right)\)的导数为( ). A: \( { { 2x} \over {1 + {x^2}}}\) B: \( - { { 2x} \over {1 + {x^2}}}\) C: \( { { 2x} \over {1 - {x^2}}}\) D: \( - { { 2x} \over {1 - {x^2}}}\)

    • 2

      下列各选项中,函数相同的是( )。 A: \(<br/>f(x) = \ln {x^2},g(x) = 2\ln x \) B: \(<br/>f(x) = x,g(x) = \sqrt { { x^2}} \) C: \(<br/>f(x) = \sqrt { { x^2}} ,g(x) = \left| x \right| \) D: \(<br/>f(x) = { { {x^2} - 1} \over {x - 1}},g(x) = x + 1 \)

    • 3

      函数\(y = 1{\rm{ + }}{1 \over x}\)的导数为( ). A: \({\rm{ - }}{1 \over { { x^2}}}\) B: \({1 \over { { x^2}}}\) C: \(\ln \left| x \right|\) D: \( - \ln \left| x \right|\)

    • 4

      求函数[img=148x49]17da6537a5eee98.png[/img]的导数; ( ) A: 1/(x^2*(2/x^2 + 1)) B: -1/(x^2*(2/x^2 + 1)) C: (x^2*(2/x^2 + 1)) D: -1/(x^2*(2/x^2 + 1))+2/x^2 + 1