举一反三
- 设[tex=3.143x1.214]fC00PSr7EsIcGln2s0pq/A==[/tex]为3个随机事件,则下列结论中正确的是 未知类型:{'options': ['若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]互不相容,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]互不相容,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]互不相容[br][/br]', '若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]对立,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]对立,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]也是对立事件', '若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]包含[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]包含[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex],则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]包含[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]', '若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]独立,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]独立,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]一定独立[br][/br]'], 'type': 102}
- 进行 4 次独立重复试验,每次试验中事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生的概率为0.3,如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]不发生,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]也不发生;如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生 1 次,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]发生的概率为0.4 ;如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生 2 次,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]发生的概率为0.6;如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生 2 次以上,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]一定发生.求事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]发生的概率.
- 对任意两件事[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]和[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex], [tex=5.214x1.357]2srdP6vK7D5mMBvqTKYrJw==[/tex][input=type:blank,size:6][/input].
- 说明下列说法是否正确:[br][/br]在要素[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]和[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的当前使用水平上,[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的边际产量是3,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的边际产量是2,每单位要素[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的价格是5,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的价格是4,由于[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]是比较便宜的要素,厂商如减少[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的使用量而增加[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的使用量,社会会以更低的成本生产出同样多产量。
- 假定[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]和[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]为集合使得[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的幂集是[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的幂集的子集。是否一定有[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的子集?
内容
- 0
若事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]互不相容,试问事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]是否对立?反之如何?
- 1
设向量组[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与向量组[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的秩相等,且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]组可由[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]组线性表示。证明[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]组与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]组等价。
- 2
证明事件 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 与 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 相互独立 [tex=0.5x1.0]rYOiDj8WGCtLXbsoCBShoA==[/tex] 事件 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 与 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 补([tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 的补集)相互独立。
- 3
设3阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值为-2, -1, 3,矩阵[tex=6.786x1.357]5sQBSCH1+oEoQda8DcapHw==[/tex],求矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的行列式[tex=1.357x1.357]JRr5OoiiAPF9KB2ukKJtuw==[/tex]
- 4
家庭[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]和[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]生产资源完全相同,且面临相同的利率。两者之间的惟一区别是,家庭[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]比家庭[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]更偏好于未来消费。(1)跨时期最优化是否意味着家庭[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]应该比家庭[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]多作投资?(2)在存在信贷配给的情况下,(1)的答案将会有什么变化?