求积分∫x^2/(1+x^2)dx
举一反三
- 下列积分中()不是广义积分。 A: \( \int_0^1 { { x \over {\sqrt {1 - {x^2}} }}dx} \) B: \( \int_0^2 { { 1 \over { { {\left( {1 - x} \right)}^2}}}dx} \) C: \( \int_0^1 { { 1 \over { { x^2}}}dx} \) D: \( \int_0^1 { { 1 \over { { x^2} - 4}}dx} \)
- 下面积分收敛的是 A: $\int_0^\infty \frac{x^{4/3}}{1+x^2} dx$ B: $\int_1^\infty \frac{dx}{x \sqrt[3]{1+x^3}}$ C: $\int_1^\infty \frac{1}{x} dx$ D: $\int_1^\infty \frac{\arctan x}{x} dx$
- 下列四个积分中,()是广义积分。 A: \( \int_0^2 { { 1 \over { { {(3 - x)}^2}}}dx} \) B: \( \int_0^6 { { {(x - 4)}^{ - {2 \over 3}}}dx} \) C: \( \int_0^1 { { 1 \over {1 + {x^2}}}dx} \) D: \( \int_1^2 { { 1 \over { { x^2}}}dx} \)
- 求不定积分∫(arctan(1/x)/(1+x^2))dx
- 设f(x)=(1/(1+x^2))+x^3∫(0到1)f(x)dx,求∫(0到1)f(x)dx