• 2022-06-14
    d( )=sin3xdx
  • -cos3x/3

    内容

    • 0

      d( )=sin3xdx

    • 1

      d( )=sin3xdx

    • 2

      求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3

    • 3

      \( \int {\cos \ln xdx} = \)( ) A: \( {x \over 2}(\cos \ln x + \sin \ln x) + C \) B: \( {x \over 2}(\cos \ln x - \sin \ln x) + C \) C: \(- {x \over 2}(\cos \ln x + \sin \ln x) + C \) D: \(- {x \over 2}(\cos \ln x - \sin \ln x) + C \)

    • 4

      生成{Sin[1],Sin[2],Sin[3]} A: a={1,2,3};Sin[a] B: Table[Sin[k],{k,3}] C: Table[Sin(k),{k,3}] D: Table[{Sin[k]},{k,3}]