设$\int_0^\pi {[f(x) + f''(x)]\sin xdx = 5} $,$f(\pi ) = 2$,求$f(0)$=( )
A: 1
B: 2
C: 3
D: 4
A: 1
B: 2
C: 3
D: 4
举一反三
- 设$f(x)$是$[-1,1]$上的连续函数, 则$\int_{-\pi}^{\pi}\sin x(\sin x+f(\cos x))dx=$ A: $0$ B: $2$ C: $\pi$ D: 以上都不对
- 函数$f(x)=\sin x + \cos x,x \in [0,2 \pi]$的上凸区间为 A: $[0,\frac{\pi}{4}] \cup [\frac{5}{4} \pi,2 \pi] $ B: $[\frac{\pi}{4},\frac{5}{4} \pi]$ C: $[0,\frac{3}{4}\pi] \cup [\frac{7}{4} \pi,2 \pi] $ D: $[\frac{3}{4} \pi,\frac{7}{4} \pi] $
- 求以下定积分可以使用的命令有()。[img=199x87]1802f8c8a02c037.jpg[/img] A: x=pi/4:0.0001:5/4*pi; y=1+sin(x).*sin(x); trapz(x,y) B: f=@(x) 1+sin(x).*sin(x); q=integral(f,pi/4,5/4*pi) C: f=@(x) 1+sin(x).*sin(x); q=integral(@f,pi/4,5/4*pi) D: syms x f=1+sin(x)*sin(x); s=int(f,pi/4,5/4*pi); eval(s)
- 函数$f(x) =sin^3 x, x \in [0,2 \pi]$的单调递减区间为 A: $[\frac{\pi}{2},\frac{3}{2} \pi]$ B: $[\frac{3}{2} \pi,2 \pi]$ C: $[0,\frac{\pi}{2}]$ D: $[0,2 \pi]$
- \(已知二元函数f(x,y)=\sin{x^2y},则\frac{\partial f}{\partial x}(1,\pi)=(\,)\) A: \(\frac{\pi}{2}\) B: \(2\pi\) C: \(-2\pi\) D: \(-\frac{\pi}{2}\)