记函数y=log2(x+1)的反函数为y=g(x),则g(3)=( )
A: 2
B: 3
C: 7
D: 8
A: 2
B: 3
C: 7
D: 8
举一反三
- 已知函数f(x)=3x,函数y=g(x)是函数y=f(x)的反函数,则g(19)=( ) A: 2 B: -2 C: 3 D: -3
- 函数y=12x+2的反函数是( ) A: y=-log2(x-2)(x>2) B: y=-log2(x-2)(x>3) C: y=log2(x-2)(x>3) D: y=-log2x-2(x>2)
- 若函数y=f(x)的导数y′=f′(x)仍是x的函数,就把y′=f′(x)的导数y″=f″(x)叫做函数y=f(x)二阶导数,记做y(2)=f(2)(x).同样函数y=f(x)的n-1阶导数的导数叫做y=f(x)的n阶导数,表示y(n)=f(n)(x).在求y=ln(x+1)的n阶导数时,已求得y′=1x+1,y(2)=-1(x+1)2,y(3)=1•2(x+1)3,y(4)=-1•2•3(x+1)4,…,根据以上推理,函数y=ln(x+1)的第n阶导数为___.
- 下列函数为偶函数的是( )。 A: \( y = {2{e}^{2x}} - {2{e}^{ - 2x}} + \sin x \) B: \( y = {\log _a} { { 1 - x} \over {1 + x}} \) C: \( y = { { {e^x} + {e^{ - x}}} \over 2} \) D: \( y = 3{x^2} - {x^3} \)
- 下列函数为偶函数的是( )。 A: \( y = e^{2x} - {e}^{ - 2x} + \cos x \) B: \( y = {\log _2} { { 1 + x} \over {1 -x}} \) C: \( y = 3{x^4} - {x^3} \) D: \( y = { { {e^x} + {e^{ - x}}} \over 2} \)