若函数y=f(x)的导数y′=f′(x)仍是x的函数,就把y′=f′(x)的导数y″=f″(x)叫做函数y=f(x)二阶导数,记做y(2)=f(2)(x).同样函数y=f(x)的n-1阶导数的导数叫做y=f(x)的n阶导数,表示y(n)=f(n)(x).在求y=ln(x+1)的n阶导数时,已求得y′=1x+1,y(2)=-1(x+1)2,y(3)=1•2(x+1)3,y(4)=-1•2•3(x+1)4,…,根据以上推理,函数y=ln(x+1)的第n阶导数为___.
举一反三
- 【单选题】对任意实数x 1 , y 1 , x 2 , y 2 , x 1 < x 2 , y 1 < y 2 , 分布函数P{x 1 <X≤x 2 , y 1 <Y≤y 2 }=? A. F(x 2 , y 2 )+ F(x 1 , y 1 )+ F(x 1 , y 2 )+ F(x 2 , y 1 ) B. F(x 2 , y 2 )- F(x 1 , y 1 )+ F(x 1 , y 2 )- F(x 2 , y 1 ) C. F(x 2 , y 2 )+ F(x 1 , y 1 )- F(x 1 , y 2 )- F(x 2 , y 1 ) D. F(x 2 , y 2 )- F(x 1 , y 1 )- F(x 1 , y 2 )+ F(x 2 , y 1 )
- 求下列函数的导数 (1)y=(x²-1)³ (2)y=cos³4x (3)y=ln(lnx) (4)y=arcsin(1/x)
- 考虑二元函数f(x,y)的下面四个性质: (1)f(x,y)在点f(x,y)处连续; (2)f(x,y)在点f(x,y)处的两个偏导数连续; (3)f(x,y)在点f(x,y)处可微; (4)f(x,y)在点f(x,y)处的两个偏导数存在; 若用P=>Q表示可由性质P推出性质Q,则有.
- 求常微分方程在[1,3]区间内的数值解,正确的命令有( )。[img=214x135]17de707813b3012.jpg[/img] A: >;>; f=@(x, y) 2*x/y+2*x;>;>; [x, y]=ode45(@f, [1, 3], 1) B: >;>; f=@(x, y) 2*x/y+2*x;>;>; [x, y]=ode45(f, [1, 3], 1) C: >;>; [x, y]=ode45(@(x, y) 2*x/y+2*x, [1, 3], 1) D: 建立f.m函数文件:function yx=f(x,y)yx=2*x/y+2*x;输入命令:>;>; [x, y]=ode45(@f, [1, 3], 1)
- 【单选题】设函数 f ( x , y ) 在 x 2 + y 2 ≤ 1 上连续,使 成立的充分条件是 A. f ( - x , y )= f ( x , y ) f ( x , - y )= - f ( x , y ) B. f ( - x , y )= f ( x , y ) f ( x , - y )= f ( x , y ) C. f ( - x , y )= - f ( x , y ) f ( x , - y )= - f ( x , y ) D. f ( - x , y )= - f ( x , y ) f ( x , - y )= f ( x , y )