若连续函数\(f\left( x \right)\)满足关系式\(f\left( x \right) = \int_0^{2x} {f\left( { { t \over 2}} \right)} \,dt + \ln 2\),则\(f\left( x \right)\)等于( )。
A: \({e^{2x}}\ln 2\)
B: \({e^x}\ln 2\)
C: \({e^x} + \ln 2\)
D: \({e^{2x}} + \ln 2\)
A: \({e^{2x}}\ln 2\)
B: \({e^x}\ln 2\)
C: \({e^x} + \ln 2\)
D: \({e^{2x}} + \ln 2\)
举一反三
- \( \int {({1 \over x} - {2 \over {\sqrt {1 - {x^2}} }})dx} = \)( ) A: \( \ln \left| x \right| + 2\arcsin x + C \) B: \( \ln \left| x \right| - 2\arcsin x + C \) C: \(- \ln \left| x \right| - 2\arcsin x + C \) D: \(- \ln \left| x \right| +2\arcsin x + C \)
- $\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$
- 下列函数中( )不是方程\( y' + xy = 0 \)的解。 A: \( y = {e^{ - { { {x^2}} \over 2}}} \) B: \( \ln \left| y \right| = - { { {x^2}} \over 2} \) C: \( y = {e^{ - { { {x^2}} \over 2}}} + 2 \) D: \( \ln \left| y \right| = - { { {x^2}} \over 2} +2\)
- 函数\(y = \ln \left( {1 + {x^2}} \right)\)的导数为( ). A: \( { { 2x} \over {1 + {x^2}}}\) B: \( - { { 2x} \over {1 + {x^2}}}\) C: \( { { 2x} \over {1 - {x^2}}}\) D: \( - { { 2x} \over {1 - {x^2}}}\)
- 函数\(y = 1{\rm{ + }}{1 \over x}\)的导数为( ). A: \({\rm{ - }}{1 \over { { x^2}}}\) B: \({1 \over { { x^2}}}\) C: \(\ln \left| x \right|\) D: \( - \ln \left| x \right|\)