若不定积分∫f(x)dx=x2+c,则不定积分∫xf(1-x2)dx=().(A)-2(1-x2)2+c(B)2(1-x2)2+c(C)(D)若不定积分∫f(x)dx=x2+c,则不定积分∫xf(1-x2)dx=( ).
B
举一反三
- 若∫f(x)dx=x2+c,则∫xf(1-x2)dx=( ). A: 2(1-x2)2+c B: -2(1-x2)2+c C: -1/2(1-x 2 ) 2 +C D: 1/2(1-x 2 ) 2 +C
- 若∫f(x)dx=x+C,则∫xf(1-x2)dx=______ A: 2(1-x2)+C B: -2(1-x2)+C C: -1/2(1-x 2 ) 2 +C D: 1/2(1-x 2 ) 2 +C
- 若∫f(x)dx=x2+C,∫xf(1-x2)dx=()。 A: B: C: D:
- 下列积分中()不是广义积分。 A: \( \int_0^1 { { x \over {\sqrt {1 - {x^2}} }}dx} \) B: \( \int_0^2 { { 1 \over { { {\left( {1 - x} \right)}^2}}}dx} \) C: \( \int_0^1 { { 1 \over { { x^2}}}dx} \) D: \( \int_0^1 { { 1 \over { { x^2} - 4}}dx} \)
- 下列四个积分中,()是广义积分。 A: \( \int_0^2 { { 1 \over { { {(3 - x)}^2}}}dx} \) B: \( \int_0^6 { { {(x - 4)}^{ - {2 \over 3}}}dx} \) C: \( \int_0^1 { { 1 \over {1 + {x^2}}}dx} \) D: \( \int_1^2 { { 1 \over { { x^2}}}dx} \)
内容
- 0
若\( \int {f(x)dx = {x^2} + C} \),则\( \int {xf(1 - {x^2})dx = } \)( ) A: \( 2{(1 - {x^2})^2} + C \) B: \( - {1 \over 2}{(1 - {x^2})^2} + C \) C: \( {1 \over 2}{(1 - {x^2})^2} + C \) D: \( - 2{(1 - {x^2})^2} + C \)
- 1
设函数f(x)连续,则积分区间(0-x),d/dx{∫tf(x^2-t^2)dt}=() A: 2xf(x^2) B: -2xf(x^2) C: xf(x^2) D: -xf(x^2)
- 2
求不定积分∫(arctan(1/x)/(1+x^2))dx
- 3
不定积分[f′(x)/(1+[f(x)]2)]dx等于() A: ln|1+f(x)|f+c B: (1/2)1n|1+f(x)|+c C: arctanf(x)+c D: (1/2)arctanf(x)+c
- 4
不定积分[f′(x)/(1+[f(x)]2)]dx等于() A: ln|1+f(x)|f+c B: (1/2)1n|1+f2(x)|+c C: arctanf(x)+c D: (1/2)arctanf(x)+c