1803a4a87e04b09.png带皮亚诺型余项的3阶麦克劳林公式为( )
A: [img=189x43]1803a4a88b6cb5c.png[/img]
B: [img=189x43]1803a4a894c4082.png[/img]
C: [img=175x43]1803a4a8a2d6146.png[/img]
D: [img=189x43]1803a4a8b026b8f.png[/img]
A: [img=189x43]1803a4a88b6cb5c.png[/img]
B: [img=189x43]1803a4a894c4082.png[/img]
C: [img=175x43]1803a4a8a2d6146.png[/img]
D: [img=189x43]1803a4a8b026b8f.png[/img]
举一反三
- 应用Matlab软件计算行列式[img=110x88]17da5d7b00219d6.png[/img]为( ). A: x^2 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 B: x^3 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 C: x^4 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 D: x^5- 6*x^2*y^2 + 8*x*y^3 - 3*y^4
- 求不定积分[img=112x35]17da6538063a9e4.png[/img]; ( ) A: (x^4*log(x)^2)/4 + (x^4*(log(x) - 1/4))/ B: (x^4*log(x)^2)/4 - (x^4*(log(x) - 1/4))/8 C: (x^4*log(x)^2)/4 - (x^4*(log(x) - 1/4)) D: (x^4*log(x)^2)/4 + (x^4*(log(x) - 1/4))/8
- 已知y=f(x)是奇函数,当x≥0时,[img=62x34]17e0bf81aac3b63.png[/img],则f(-8)的值是( ) A: -8 B: -4 C: 4 D: 8
- 设X是随机变量,且[img=139x31]1802e2aa00edf66.jpg[/img],则D(X)=( ). A: 2 B: 4 C: 6 D: 8
- 设[img=127x53]17f1b3d6db98b83.jpg[/img],f(x)=arctanΧ,则[img=56x55]17f1b3d82842941.jpg[/img]=()。 A: π B: 3π/4 C: -3π/4 D: 2π