设实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]所有特征根的模都是 1,请证明:[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为正交矩阵。
举一反三
- 求证: 正定实对称矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正交矩阵的充要条件是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为单位矩阵.
- 二阶实正规矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 不是对称矩阵, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是正交矩阵的充要条件是 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的行列式值等于 1', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的行列式值等于 -1', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是可逆矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是奇异矩阵'], 'type': 102}
- 证明:如果实矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]正交相似于对角矩阵,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]一定是对称矩阵.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为实对称矩阵,且[tex=8.929x1.357]LXtcz8hY+gk4rolY95FMai1hDTO3zmOeh4/3sSzhNkE=[/tex]问 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是否为正定矩阵。
- 设矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]都是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵,且[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为对称矩阵,证明: [tex=2.643x1.214]RXNYPSeOxp2KYb7ZxErkfA==[/tex]也是对称矩阵。