证明如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是全集[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex]的子集,则[tex=4.286x1.143]fFCqzAT6UxV1RuCuK/Z1d9biSaN67E6yjej+tUoQWYU=[/tex]
举一反三
- 设[tex=5.214x1.214]l2vYijvwphpA0Bdo8olvNhKvOVd4RCELKut0jj6S5qs=[/tex]是连续映射,Y是Hausdorff空间,证明:(1)集合[tex=9.357x1.357]QCqopxinhs+TvVYgLw48vVpO4x/Rie4gzAlmw62rJGM=[/tex]是X的闭子集;(2)如果A是X的稠密子集且[tex=3.714x1.357]fo4X83uQk0aLKgSpBjpSMw8oj58YdJ5bCiu5d4gfWQqZvgjwV7CYEcyqXJHmRmoq[/tex],则f=g。
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的可逆线性变换.证明:1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值一定不为0;2) 如果[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值,那么[tex=1.643x1.357]7hXLKuNcz29qRRA2zjn4rA==[/tex]是[tex=1.714x1.214]d+9NDUvA5ZDrRGeFW5fxcQ==[/tex]的特征值.
- 令[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]为全集[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex]的子集。[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]的特征函数[tex=0.857x1.214]dexC+Q+qIUz30hSMtIz1vw==[/tex]是从[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex]到集合[tex=2.5x1.357]z399E0W6ABOUvfUkupgaCQ==[/tex]的函数,使得如果[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]属于[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]则[tex=3.5x1.357]IscH+XN1qp8MkvnvlC20JA==[/tex],如果[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]不属于[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]则[tex=3.5x1.357]kdH4k/6kTnQmqgp1gcwVPw==[/tex]。令[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]、[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]为集合。证明对于所有[tex=1.929x1.071]EC7JfiXcA5onR/5rDgRgoQ==[/tex]有[tex=9.643x1.357]b7dO9qpunjkvU6ztNkZf+prTyPJE+400Qqpqh+/klUVlJJxA1/Q8wI5RDBAD9Ifr[/tex]
- 令[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]为全集[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex]的子集。[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]的特征函数[tex=0.857x1.214]dexC+Q+qIUz30hSMtIz1vw==[/tex]是从[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex]到集合[tex=2.5x1.357]z399E0W6ABOUvfUkupgaCQ==[/tex]的函数,使得如果[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]属于[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]则[tex=3.5x1.357]IscH+XN1qp8MkvnvlC20JA==[/tex],如果[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]不属于[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]则[tex=3.5x1.357]kdH4k/6kTnQmqgp1gcwVPw==[/tex]。令[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]、[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]为集合。证明对于所有[tex=1.929x1.071]EC7JfiXcA5onR/5rDgRgoQ==[/tex]有[tex=6.857x1.357]IxtKtvi8POmtwzQ/U3qADnq59URA34Vj1nJSM2cwa9Y=[/tex]
- 证明:(3)设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是不可数无限集合,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的可数子集,则[tex=4.929x1.357]5EJpnOUvrLEmq/er1vPLeWGTm2HKvi96vlv7X7myujk=[/tex]。