某信源S共有32个信源符号,其实际熵 =1.4比特/符号,则对信源直接等长二元编码时,编码长度最小为 ______
举一反三
- 离散无记忆信源:对信源符号进行二元香农编码并计算平均码长和编码效率;
- 某离散无记忆信源有[tex=0.5x1.286]KiYVEMZ+/GosTu4NVepMFw==[/tex]个信源符号[tex=9.286x1.0]VLg+UqNSE8Zb2AZajAtgxm1gbqoFD+ZWAJnAFRbMI6F4FD2iiDWgDLJY8DByxq4yDBP0Vnr19Jszru4mVDx8fw==[/tex]各符号的概率分别为:[tex=13.429x1.286]MAKge+EAuSGMPNMTjquJt6jhuqgr9tTom1GwhyfATimkWbeWIwP8dY8QOjC8wT3U[/tex]对该信源符号进行二元[tex=4.571x1.286]ikxcirqWSAFj4IyUfSyWww==[/tex]编码(要求:码长方差最小)。
- 若一离散无记忆信源的信源熵H(X)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为()。
- 对信源符号X={a1,a2,a3,a4}进行二元信源编码,4个信源符号对应码字的码长分别为K1=1,K2=2,K3=3,K3=3,满足这种码长组合的码一定是唯一可译码。
- 4符号信源的最大信源熵可达2比特/符号