求函数y=sin2x的二阶导数y''
A: y''=-4sin2x
B: y''=4sin2x
C: y''=-2sin2x
D: y''=-4cos2x
A: y''=-4sin2x
B: y''=4sin2x
C: y''=-2sin2x
D: y''=-4cos2x
举一反三
- 求微分方程[img=143x21]17da5f14490e50e.png[/img]的通解,实验命令为(). A: dsolve(D2y-2*Dy+5*y=sin(2*x),x)ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x) B: dsolve('D2y-2*Dy+5*y=sin(2*x)','x')ans =cos(2*x)*(sin(4*x)/17 - cos(4*x)/68 + 1/4) - sin(2*x)*(cos(4*x)/17 + sin(4*x)/68) + C1*cos(2*x)*exp(x) - C2*sin(2*x)*exp(x) C: dsolve(D2y-2*Dy+5*y=sin(2*x),'x','y')ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x)
- 【单选题】化简 sin( x + y )sin( x - y ) + cos( x + y )cos( x - y ) 的结果是 A. sin 2 x B. cos 2 y C. - cos 2 x D. -cos 2 y
- 3. $(2x\cos y-{{y}^{2}}\sin x)dx+(2y\cos x-{{x}^{2}}\sin y)dy$的原函数是 ( ) A: ${{x}^{2}}\sin y-{{y}^{2}}\sin x+C$ B: ${{x}^{2}}\sin y+{{y}^{2}}\sin x+C$ C: ${{x}^{2}}\cos y-{{y}^{2}}\cos x+C$ D: ${{x}^{2}}\cos y+{{y}^{2}}\cos x+C$
- 在区域<img src="http://img2.ph.126.net/gYKpVz-ihv2c735JpXLFXA==/148900262780427590.png" />画出函数<img src="http://img1.ph.126.net/1MufBuQ2l1d-e3P0WpTtOA==/6597356739194210350.png" />的密度图形。? ContourPlot[Sin[x^2]+y Cos[y^2],{x,-6,6},{y,-6,6}]|DensityPlot[Sin[x^2]+y Cos[y^2],{x,-6,6},{y,-6,6}]|DensityPlot[Sin[x^2]+y Cos[y^2],{x,-6,6},{y,-6,6}]|ContourPlot[Sin[x^2]+y Cos[y^2],{x,-6,6},{y,-6,6}]
- y=arcsin(4x+1)的反函数为 A: y=(sinx-1)/4, x∈R B: y=sin[(x-1)/4], x∈R C: y=sin[(x-1)/4], x∈[-π/2,π/2] D: y=(sinx-1)/4, x∈[-π/2,π/2]