• 2022-06-12
    设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从[tex=5.071x1.286]F749mtJB9SzUvP0fOyHt52F92MnIq1D0zOSkt7lELbk=[/tex]上的均匀分布,求随机变量[tex=4.429x1.286]gefg40u5Y+zGFdiVFVFBLQ==[/tex]的密度函数[tex=2.429x1.286]ziQh3wPOg9UOwb2Y/JrY6Q==[/tex] .
  • [b]解[/b]     因[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]得密度函数为[tex=12.214x4.0]OLdhkgwiN7f8y1keeGS2hm1LfwaC9Q6/j2JaJIFq9tpDkSjkLcqZdfFjnF0H8FDysI/gAmL0RcAW7bGBSoAhohvyTqAJBmtw/8RsklzhJNwYbiHhlaj4zbZtwHZFmY4BnssVQx7zI6T2UKGviuDdfA==[/tex],[tex=5.857x2.143]4dpH5kLj0Lb1meGKW/DLzmwvC+yrSqveP56chn4BFuXUzLUdSeQbwthENTwBEcG/[/tex]时,有[tex=7.214x1.214]TEi4R5gB2qow4yxwX5icr9YghJzR+tGi1/YmrnAKsl8=[/tex],[br][/br]当[tex=2.357x1.286]vufjoyOU8r+a2FI0qUvzXw==[/tex]时,[tex=12.857x1.286]TewXgczNM4xFwji4fK9jVSC1YVMF08H7G/Y3q63a1+Mmm3ImwC4cVDxx4u8cyCAz[/tex][tex=4.071x1.286]R9S6n/tYJraXU8umHbXyb7gzIHtNkNN+dgF6mCLlBhs=[/tex];[br][/br]当[tex=4.071x1.286]kxWLXBztaGH0UYKgATEWpw==[/tex]时,[tex=15.357x10.571]GKt8hgUJ8I7KChe+hothOLficwP5XTjWTgSzhN8q4e61WkUvKof7bIyV8IGYvxZcEas8weXct540ONk/r5AwnaPMmCYNpVkm1BKUQB0fiM/0oxMmd9AheKconf3ZLx+GTew4bRMRpmS16FEjxzmrGH0G39jqnGHSJbjn2o9fmlum5YUleN2sbgTHyVbZVDvYYrQj6vWqhEyNsPs5q58YP/z1r85LEa28/ePN13xn4hbQPgaaIYrma1aoVGGF9GlqwCYJ3WfyG58BjWML+7dP9eKMVhEvvx2PiGxS0hhiTEmnolmrlx4Jka5JHN1JBkYXKrQ1j3Neo0h0jwgcPJogcg==[/tex]当[tex=2.357x1.214]oFDybxryakEK8YRN6Uzlow==[/tex]时,[tex=12.857x1.286]TewXgczNM4xFwji4fK9jVSC1YVMF08H7G/Y3q63a1+Mmm3ImwC4cVDxx4u8cyCAz[/tex][tex=4.0x1.286]HZ5aOVCF11+pDY/ZhWyKgF0P0SDA2Z2Jx3LwkuB+LHs=[/tex];因[tex=2.357x1.357]xKBaEkU4dNK+CPYRq5JGuA==[/tex]连续且仅有两个不可导的点,当[tex=4.214x1.214]umTNZKuhLRE2R7YnWz3qHw==[/tex]时,[tex=7.286x2.786]pVGNB7HgZ80qcDy7Zi8wnlAKQIH6V/wZcimHHc1Bho9EwODnDJ2uK0gqsEZwjWw1[/tex],故[tex=3.929x1.0]hDskmyFI60lo5kn7VgKK0Q==[/tex]为连续随机变量,密度函数为[tex=18.286x4.0]QOteGoFSd22ACskgD6gLiJzYuPRnuDP/EULpqXryr7k4wfpW0m37wL8RDAW6ZNxMpF8ZMpydWrWnT/ABpT28gXXhDA1xZHhrSevwJpqq644t+PU77PkfB7BItONaJxBkZrcah9a6C6iBpmywUxi6dBM+kq80fHgLOR9nHfXsm6I=[/tex] .

    内容

    • 0

      设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从区间[tex=2.929x1.286]U4gwwZFEB18kUXgjrLuA4A==[/tex]上的均匀分布,求:(1)[tex=5.714x2.357]Y21Ou7oT5Yb4eSpnnDD9Ja/UbS4cYZX1s1Z1vwm7adywtO6NjKXUExH8Ts+mmahO[/tex];(2)[tex=3.5x1.286]xj5/s30cFXEEQZMktzi/Zg==[/tex]得密度函数 .

    • 1

      设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从区间[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]上的均匀分布,试求[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的密度函数[tex=4.571x1.286]lcacn34EnIaoItqf80yIJg==[/tex] .

    • 2

      设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从区间[tex=2.143x1.286]l9DYubvhJSmV7cTo/ad4fA==[/tex]上得均匀分布,(1)求[tex=3.357x1.286]s8MxvfWC9l8tAzB+vk6hQg==[/tex]得密度函数;(2)[tex=4.286x1.286]f4K1gTBjsCQR6d//JYB5/A==[/tex] .

    • 3

      设随机变量  [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]  与  [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]  相互独立,  [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]  服从正态分布  [tex=3.929x1.286]N5dq4BwkTdWMAb0OmXWoEaQHcjMspfC0l4+u6bRl6uAvEVUQUcSxPV1hL5aXeKrf[/tex], [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]  服从均匀分布 [tex=3.857x1.286]oINv2OUrkfWf54e8Ht2lD1iv2R1pi2JiMcP1OIfioeI=[/tex] , 求  [tex=4.929x1.286]bstb6Acm/GnARrPc8f1uPw==[/tex]  的密度函数.

    • 4

      设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从[tex=1.643x1.286]SUyIDVBxyBnYGtkXrfwibA==[/tex]分布,求下列随机变益的分布:(1)[tex=1.286x1.286]XVr8gs9vV/mKFkxZMBcZ2g==[/tex];(2)[tex=1.929x1.286]vMX3I1AlppD9j/tbfIVeOw==[/tex]。