y=x/(x^2-1)的垂直渐近线有()条。
A: 1
B: 2
C: 3
D: 4
A: 1
B: 2
C: 3
D: 4
举一反三
- 积分[img=136x52]1803d6afd4e6f95.png[/img]的计算程序和结果是 A: clearsyms xy=1/x^2/sqrt(x^2-1)int(y,x,-2,-1)3^(1/2)/2 B: clearsyms xint(1/x^2/sqrt(x^2-1),x,-2,-1)3^(1/2)/2 C: clearsyms xint(1/x/sqrt(x^2-1),x,-2,-1)-pi/3 D: clearsyms xint(1/x/sqrt(x^2-1),x,-2,-1)3^(1/2)/2 E: clearsyms xint(1/x^2*sqrt(x^2-1),x,-2,-1)log(3^(1/2) + 2) - 3^(1/2)/2
- 方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$
- 求y=2x^2/(x^2-1)的竖直渐近线,y=2x/(x^2-1)的水平渐近线
- 双曲线x^2/16-y^2/9=1的渐近线方程为() A: y=±16x/9 B: y=±9x/16 C: x/3±y/4=0 D: x/4±y/3=0
- 执行以下语句的结果:dict1={"x":1,"y":2,"z":3}dict2={"x":4,"a":5}dict1.update(dict2) A: {"x":1,"y":2,"z":3,"x":4,"a":5} B: {"x":4,"a":5,"x":1,"y":2,"z":3} C: 有重复项,结果有误! D: {"x":4,"y":2,"z":3,"a":5}