如一元函数 [tex=3.429x1.286]P3riAXwlulFoWGjfhH4DocgnHk+JNNDrwpr3qD1dehc=[/tex] 在点 [tex=0.929x1.286]pid4xDoxL+xaac7h3yRpsQ==[/tex] 连续, [tex=3.357x1.286]uzRvwzelySXa8Arr/LWDbayCezgZ1C/f6VUKt53TL/0=[/tex] 在点 [tex=1.0x1.286]5PBm7Rex1+3Bx6Y1vbx1pg==[/tex] 连续, 那么二元函数 [tex=2.857x1.286]tj1rvgP4AHIdbrLux0kAEQ==[/tex] 在点 [tex=3.071x1.286]cSjGHqCnItShrO6H41ZST8s5v6AHO0ktGOR16s+kL4s=[/tex] 是否连续?
举一反三
- 在“充分”“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在点[tex=1.0x1.286]5PBm7Rex1+3Bx6Y1vbx1pg==[/tex]可导是[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在点[tex=1.0x1.286]5PBm7Rex1+3Bx6Y1vbx1pg==[/tex]连续的[input=type:blank,size:4][/input]条件。[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在点[tex=1.0x1.286]5PBm7Rex1+3Bx6Y1vbx1pg==[/tex]连续是[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在点[tex=1.0x1.286]5PBm7Rex1+3Bx6Y1vbx1pg==[/tex]可导的[input=type:blank,size:4][/input]条件。(2)[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在点[tex=1.0x1.286]5PBm7Rex1+3Bx6Y1vbx1pg==[/tex]的左导数[tex=2.857x1.286]/eFQ159W159pIm0UhQBg2NyD7c//EqX01XT6zXGtTgo=[/tex]及右导数[tex=2.857x1.286]MJaresffskZIfIuGkLVbFZ6ohnEfnfJHOFccX8qCvds=[/tex]都存在且相等是[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在点[tex=1.0x1.286]5PBm7Rex1+3Bx6Y1vbx1pg==[/tex]可导的[input=type:blank,size:4][/input]条件。(3)[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在点[tex=1.0x1.286]5PBm7Rex1+3Bx6Y1vbx1pg==[/tex]可导是[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在点[tex=1.0x1.286]5PBm7Rex1+3Bx6Y1vbx1pg==[/tex]可微的[input=type:blank,size:4][/input]条件。
- 若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 考虑二元函数 [tex=2.786x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex] 在点 [tex=3.071x1.286]cSjGHqCnItShrO6H41ZST8s5v6AHO0ktGOR16s+kL4s=[/tex] 处 4 条性质: (1) 连续,(2)两个偏导数连续,(3)可微,(4)两个偏导数存在,则 未知类型:{'options': ['[tex=6.714x1.286]hd35pNaA0Eiod8MTmFaGgomYJBkfxcNNvnWevNvPTwMSydbpVrPrhMJ0LU8O97Zy[/tex]', '[tex=6.714x1.286]cYYmka0YgBDD439OD8YNwz4bkVJwCFlEEDGnhT6XGdiezZJkBRlts2vKWpBfQmRU[/tex]', '[tex=6.714x1.286]cYYmka0YgBDD439OD8YNw0ELizSCnLXgyBFl6JWuZ0CbAT9eBgE3kPOkvkvYcDKJ[/tex]', '[tex=6.714x1.286]cYYmka0YgBDD439OD8YNw+K/wZl+af8MPlcg6Vl771DZ9E/n1OLTs1Rt7tiyNPo0[/tex]'], 'type': 102}
- [tex=2.857x1.286]tj1rvgP4AHIdbrLux0kAEQ==[/tex]具有二阶连续偏导数,该函数在点[tex=3.071x1.286]cSjGHqCnItShrO6H41ZST8s5v6AHO0ktGOR16s+kL4s=[/tex]取得极值的必要条件是[input=type:blank,size:6][/input];在驻点[tex=3.071x1.286]cSjGHqCnItShrO6H41ZST8s5v6AHO0ktGOR16s+kL4s=[/tex]处取得极大值的充分条件是[input=type:blank,size:6][/input] .
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。