对于含有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个互不相同字符的串,则真子串(不包括串自身但含空串)的个数是 .
未知类型:{'options': ['[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]', '[tex=1.0x1.214]Xt/NOAjGW95aLolhbuMcYA==[/tex]', '[tex=4.286x1.357]X2HDt0pEO7E8rfUAYEYchQ==[/tex]', '[tex=4.286x1.357]wCSx81VO8tljcBqzJjfPYQ==[/tex]'], 'type': 102}
未知类型:{'options': ['[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]', '[tex=1.0x1.214]Xt/NOAjGW95aLolhbuMcYA==[/tex]', '[tex=4.286x1.357]X2HDt0pEO7E8rfUAYEYchQ==[/tex]', '[tex=4.286x1.357]wCSx81VO8tljcBqzJjfPYQ==[/tex]'], 'type': 102}
举一反三
- [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]与对角矩阵相似的充要条件是 未知类型:{'options': ['[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个互不相同的特征值', '[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个互不相同的特征向量', '[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个线性无关的特征向量', '[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个两两正交的特征向量'], 'type': 102}
- 证明:只要[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是一个大于等于2的整数,则具有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个元素的集合中有[tex=4.286x1.357]iXXn9SqdYts5bP7igqmEYg==[/tex]个子集恰好含有2个元素。
- 需要用多少字节来编码[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]位的数据,其中[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]等于7
- 下面这个“证明”错在哪里?“定理”如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是正数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是正数。“证明”假定[tex=1.0x1.214]S08+KKG98HbrAJCN7f6pjg==[/tex]是正数。因为条件命题“如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是正数,则[tex=1.0x1.214]S08+KKG98HbrAJCN7f6pjg==[/tex]是正数”为真,所以可以得出[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是正数。
- 证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是整数且[tex=1.0x1.214]S08+KKG98HbrAJCN7f6pjg==[/tex]是奇数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数。