设[tex=3.571x1.357]n9szCAW9NR93NzdWHX2+SBSXYvRAO7ROAT5M25kgbpM=[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶正交矩阵,证明[tex=12.0x1.357]MKsEg1ysQr/9Ko4lJHBu1wLtekI0URKZ1TmH0HhNgWjyEtXYrp9NpvGmyzasFfDZDVvrX8LYChgQD/MYJvWYJA==[/tex],其中[tex=1.286x1.286]mgvJX62WN+M4jPAs9Xt8iw==[/tex]为[tex=1.071x1.071]TPbRIr21p7Qs4de2iTpErA==[/tex]的代数余子式。
举一反三
- 证明:前[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个自然数之和的个位数码不能是 2、4、7、9
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=
- 设 [tex=3.571x1.357]n9szCAW9NR93NzdWHX2+SBSXYvRAO7ROAT5M25kgbpM=[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵,称 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的主对角线上所有元的和为 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的迹,记作 [tex=1.571x1.0]Jkazn5fpwinwHmqJ2I5Nqw==[/tex], 即[tex=13.857x3.286]ApBtKiFHAOgbksEzlkUgQf4JIM54vj5iW2TpkcwMAEecQYQJE0eP9fJruMFo1OM7y2IbYTOuub3sz43Gx+h3AydvGiFrzpX0Js65mF2dRao=[/tex]求证: 当 [tex=7.643x1.357]n9szCAW9NR93NzdWHX2+SLhkxTINNav7EKG24K5sthCtbgcL4JhqKi++4owLONaO0Gy5ri0DjVm0oX9A5C4j+A==[/tex] 均为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵时,有(1)[tex=9.143x1.357]ApBtKiFHAOgbksEzlkUgQeOI9Z/tKprDVKWICKctsPZWhyqxtonKt84VgNWlxK2h8J9lG7fsyi4uYVP1GcCGdxfNJmNn8fk8MAGbeIboXtg=[/tex](2) [tex=6.0x1.357]ApBtKiFHAOgbksEzlkUgQQhMjhle0mjjuQZQ69gypBleTXvAOIo1pZ/d/9D2Kqi+[/tex](3) [tex=4.929x1.214]ApBtKiFHAOgbksEzlkUgQc2APyVmL+ajNnM/lIzexzWlt+t0+SE2A/VZVAHkcQvyzbZ8GGefr6DTwY6xR5XauQ==[/tex](4) [tex=7.143x1.357]ApBtKiFHAOgbksEzlkUgQQBYujH3bT6Qb1WqfyDs28E08muha9WBM9rWm03NfF7E[/tex]
- >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']