举一反三
- 设[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]是群[tex=2.571x1.357]WGC1CuEIXJ2UAqjN18lr2bMBb2LdtoR0igzQyVPRnF4=[/tex]的一个元素,试用归纳法证明,对于[tex=2.929x1.214]D3mOS4Vp6V3jBFoTrKVOsw==[/tex]有[tex=4.143x1.714]2QuGUmZK8AIkg5nXnXzzxHg3tKXbLP39YLLpsJP7vOM=[/tex]。
- 静止型[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]地中海贫血患者之间婚配,生出轻型[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]地中海贫血患者的可能性是 A: 0 B: 1/8 C: 1/4 D: 1/2 E: 1
- 证明群[tex=2.571x1.357]0M+jRRjZTQEbyc2B+Dq3Gg4xXB7/wSm8fAJvF991SDs=[/tex]的任意元素[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],都有[tex=2.286x1.0]iqAvdb4HOMEC4kXjU9KjpQ==[/tex],这里[tex=3.571x1.357]8lFG9h6toVZmuD/FgboPJw==[/tex]。
- [tex=2.214x1.0]Z8GWW72u+MH/mjafnp+83A==[/tex]丙酮酸经过丙酮酸脱氢酶系和柠檬酸循环产生[tex=4.0x1.214]EPDWVFNjIR8daNoozaWRDg==[/tex],生成的[tex=3.214x1.0]1AqDCKqjaAug6buHS5Z0tQ==[/tex]、[tex=3.429x1.214]HYAn2+I9AZQLWcA3ajoPaw==[/tex]和[tex=2.143x1.0]qQANfGnLx7pE5mcaEibuNg==[/tex](或[tex=2.071x1.0]YGdeb/NAM7yg+XY6SY16Fg==[/tex])的摩尔比是( )。 未知类型:{'options': ['3:2:0', '4:2:1', '4:1:1', '3:1:1', '2: 2:2'], 'type': 102}
- 设[tex=2.571x1.357]0M+jRRjZTQEbyc2B+Dq3Gg4xXB7/wSm8fAJvF991SDs=[/tex]是一个群,且[tex=2.571x1.071]6eaFNvbNfTsEPFqVDwsSaw==[/tex],如果对于每一个[tex=2.643x1.071]8wNZ9fY3UttPe3GaOUfnrA==[/tex],有[tex=4.0x0.786]p6eVyO385LDZ+WZGsT+wxQ==[/tex],则由这样的元素[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]可以构成一个集合[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex],试证明[tex=2.357x1.357]tivK2mu6Un99R8QaBwhvzDm113TWvWVM+IuiJLKOwk8=[/tex]是群[tex=2.571x1.357]0M+jRRjZTQEbyc2B+Dq3Gg4xXB7/wSm8fAJvF991SDs=[/tex]的子群。
内容
- 0
设[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]是整数且不全为0,而[tex=9.857x1.214]hhHzRVDsWGXE+Yltfe39hDUdsl3Yzf9jGRPDg4wYEoJYR6eBGAfms1GUG8a2PN1l[/tex],证明[tex=0.571x1.0]TcM6B5Wrs5vy9dWrxRPSdg==[/tex]是[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]与[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]的一个最大公因数当且仅当[tex=4.214x1.357]jI1oqbiyUHYU1xbNvvBdDK5ib01K7Vb7AmVkL7RKEyk=[/tex]
- 1
已知[tex=10.786x1.357]oPxEQGciaJq0uWonaJqXssvTKx2aAMqoshLd51U2O4M=[/tex],若[tex=2.0x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]相互独立,则[tex=3.0x1.357]cl60lRnHnAb2Fyha9FYNvw==[/tex] A: 1/2 B: 1/3 C: 2/3 D: 3/4
- 2
有[tex=2.0x1.214]rx7+rpOjmyj7tj6QX/SKxw==[/tex] 3 个盒子,[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]盒中有 1 个白球和 2 个黑球,[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]盒中有 1 个黑球和 2 个白球,[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]盒中有 3 个白球和 3 个黑球,今掷一颗骰子以决定选盒,若出现 1,2,3 点则选[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]盒,若出现 4 点则选[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]盒,若出现 5,6 点则选 [tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]盒,在选出的盒子中任取一球(1) 求取出白球的概率;(2) 若取出的是白球,分别求此球来自[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]盒、[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]盒、[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]盒的概率.
- 3
设[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]为有理数,[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]为无理数,证明:(1)[tex=1.929x1.071]pUajEZaPVtgwNiXf/EU1QQ==[/tex]是无理数(2) 当 [tex=2.429x1.214]XwnTfQ+kRl7vsQbSLehAjA==[/tex]时,[tex=1.143x0.786]BZFElFAD2N3Y84Bj04ZpFw==[/tex]是无理数
- 4
6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。