设二维离散随机变量[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的可能值为[tex=12.071x1.357]wEgz2ygFTKNjc2LJFGZbsDAK5HWqbc6QdhzeEHCVSMJyViHoKgnhPCb2yUKDq0jp[/tex]且取这些值的概率依次为 [tex=8.357x1.357]HP6gTyi9c15So0tLJxzzdwXWIw5nUIMuGNAMGOhVWPM=[/tex], 试求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 各自的边际分布列.
举一反三
- 设二维离散随机变量[tex=2.5x1.357]PWg5V4GQQafckGNgbx6gmw==[/tex]的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 各自的边际分布列.
- 设二维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合密度函数为[tex=12.929x3.643]s59y2K1bDNChzmHwfrn1oZMscZzqsMzxrepmwWk2KcUQpqKd8yMS9MfWFtdr1CS+4zfy5v+85aA3CBgWf5+U9g==[/tex](1)求常数 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex];(2)试判断 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否独立?
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.
- 设二维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的分布律为[img=213x108]1788c79a85ec2ac.png[/img]试求 : [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否相互独立, 为什么?
- 设二维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合密度函数为[tex=13.214x3.643]s59y2K1bDNChzmHwfrn1oa1pF1t9i55DnlSuYaIvQnQi0naK6GjIdZ7iQEwWX5H2lPkg2lbQIKJXM4qLY0yfKA==[/tex]求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的相关系数.