神经网络卷积运算的本质是____________,卷积核的参数实际上就是神经元输入的____________。
举一反三
- 在卷积神经网络中,有些参数不能通过网络学习得到,需要自己定义,也就是我们常说的超级参数。以下属于超级参数的有( ) A: 卷积核的宽 B: 卷积核的高 C: 卷积步长 D: 其余全都是
- 以下参数中,哪个参数不属于卷积神经网络中的超级参数( ) A: 卷积核的高 B: 卷积填充单元 C: 卷积核内的权重参数 D: 卷积步长
- 卷积神经网络就是含卷积层的网络。
- 深度学习涉及的主要方法包括基于卷积运算的神经网络(卷积神经网络CNN) 基于多层神经元的自编码神经网络和深度置信网络(DBN)等。
- 下列对于卷积神经网络的描述,错误的是______。 A: 卷积神经网络同时具备全连接神经网络和卷积运算的特点 B: 卷积神经网络是一种前馈型神经网络 C: 每个卷积层可包含多个卷积核来进行特征提取 D: 卷积神经网络的特征提取阶段包括卷积层和池化层