举一反三
- 假定[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是偶数环,证明,所有整数 [tex=3.643x1.357]TMMPR3S5eZvbaPJRdFNN/g==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的一个理数 [tex=0.786x1.0]u/WBnkeg9K+X+s2FOR+k6g==[/tex]等 式 [tex=2.786x1.357]CbWANqeTTGHrV6M+CSmfFiFywfszhVivZ1ZgRmOy2M4=[/tex] 对 不对?
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为交换环, [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的非零理想, [tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex] 是 [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 的素理想. 证明: [tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的理想.
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元的交换环, [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的真理想. 证明: 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的每个不在 [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 中的元素都可逆, 则 [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的唯一的极大理想.
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是有单位元的环, [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的一个真理想, 证明:存在[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的极大理想 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex]使 [tex=2.786x1.143]/AskU05rJFzE+CohvFDboA==[/tex].
- 证明命题 3. 7.注 命题 3. 7 如下:设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个环,[tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的一个理想.(1)若[tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的一个理想且[tex=2.357x1.143]dFK0pllFt/zWEC+crtFExA==[/tex], 则 [tex=1.5x1.357]DQDKvU4BxJ/UC33T+mY9sw==[/tex] 是[tex=1.714x1.357]ceJTjldMkJXWCHatl5T1Jg==[/tex]的理想;(2)若[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]是[tex=1.714x1.357]sU/Eol/VzF4h4tpIDEJ9Ag==[/tex]的一个理想, 则存在 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的理想[tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex], 使[tex=2.357x1.143]dFK0pllFt/zWEC+crtFExA==[/tex]且[tex=3.286x1.357]lODhOYSHJTAF/Tk9pX1cLA==[/tex]
内容
- 0
设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同构, 证明: [tex=1.571x1.429]WwcGTNxNgqKGUcObs50zWg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同构.
- 1
设 [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 和 [tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex] 是环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的理想且满足 [tex=8.429x1.357]d0SviAaQvqe5MwGVEWJq4a0s7W5DbmFNl5qcG4Q0BNI=[/tex] 证明: 环 [tex=3.786x1.571]qyHbwyK3mgaAt+V3+n4qCSn7zLVtDKHO6NC2LNTN6gM=[/tex]
- 2
设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个环,并且[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]对于加法来说作成一个循环群,证明[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个交换环。
- 3
设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是有限环, 假设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]没有零因子, 证明: [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是除环.
- 4
设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个只有有限多个元素的交换环,且[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]没有零因子。证明[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个域。