• 2022-06-15
    设函数[tex=4.071x1.214]a4oRVNeUpH+2qKe44UlhS2r70TIvzUkrHQyfc+dHfEkTGIxXrdvHeUFRVNAlaAV5[/tex]满足可加性,即对任何[tex=3.857x1.214]19u86AX9imxrmfK4fNxHmpllcpg8HMJFCXThG43ZiPg=[/tex],[tex=11.429x1.357]MQTJEpfFyNflorqirawNMvJRMQ6Q4OjD4ZR88pCNz8r0EpwdEAvn1EqfEell78Z7Jj1reNDv5ssFtbRipfxbC5jKcmoRRUNS/3Yq1HRJ/L4=[/tex],并且[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处连续,证明:[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=0.929x1.0]56hApSzAggyB8sjmsuaFgA==[/tex]上连续
  • 证    因为[tex=3.071x1.214]yDpKNc9KJwFCwKKgRn4yWWXGzJroW2Cy1ZWCPRFnuIE=[/tex],依可加性,有[tex=23.571x4.214]a0s3MH7cLIdmiBRR0YN06y2S4DDph6U9AbQcv09BD3UHdSCypKC0gtk7vqjr1hyBzbMx1mnTva8+mm4Koee9VKst98JLrxVMMxA+3V7QuCI3GQFB84/CLhHYIfTz1FevWLaYMKgxbV52px36gycR3yOivX8+miivNEaJPRJ4y2eCwvTFOWCBLig1EcXSPC9T+rgfVS/f22qq1FJRI+Xsib/g3IxSWz9FNFahDXC5mRRF8V5mCqftTDsypFT2/pmvJcM04rIriXPOG/gUPXGN7FhU4ww7n4bH/Xf5kGvujuU19MpYJmnP2bV8U1vbE6cMYIAI3AC/ecDsy6AAJlYHmx7u40UpK9nkTK00pTRMuAlEfdzAPufcAvpCLCoET06DoCqSxd1OGkJZ1lJCeKhjVxp401ei5KW3xPgjX6fRN68=[/tex]又[tex=11.429x1.357]MQTJEpfFyNflorqirawNMvJRMQ6Q4OjD4ZR88pCNz8r0EpwdEAvn1EqfEell78Z7Jj1reNDv5ssFtbRipfxbC5jKcmoRRUNS/3Yq1HRJ/L4=[/tex],令[tex=3.929x1.214]rQRezvF7SbgS3wAUyEQUpA==[/tex],得[tex=9.429x1.357]A6sf+uBu8yP0OZk/6YCIx8Ht493fUDzSOWBk6V2yuJo=[/tex],所以[tex=6.929x1.929]MhC0sa4kP8ihnFHLNuEHS+KxjXIU6jWrgEM2eQB04CTIcBIEOMiS48xdq3W7bdSDwyGvAKwWufP4ZrtFsReuoA==[/tex],即[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=0.929x1.0]56hApSzAggyB8sjmsuaFgA==[/tex]上连续。

    举一反三

    内容

    • 0

      设[tex=0.5x1.214]++gGGJQcubEKWlse37f6tQ==[/tex]在[tex=2.429x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]连续,且对任何[tex=3.0x1.214]c9SxnykEyTwnb0yXQilXAOey1kc/13DVk6H7G9gIadc=[/tex]有[tex=8.286x1.357]K3++nxUSUZHTFVPnzz4qbB6jjUya4uAuiFvnFHMlWi8=[/tex]证明:(1)[tex=0.5x1.214]++gGGJQcubEKWlse37f6tQ==[/tex]在[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]上连续;(2)[tex=5.0x1.357]l+XNTnkEmAW3twOx9WuOgLZzET84fEK56OKA2Ux6Lkg=[/tex]

    • 1

      设定义在[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]上的函数 [tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在0,1两点连续,且对任何[tex=2.0x1.071]syzvlYhv03GursgOyzwpOQ==[/tex] 有[tex=5.357x1.571]xu0ko2uR2HW/rSlh5BJHAPPr9ce/ZjkDTURfal+EWLA=[/tex] .证明 [tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]为常量函数.

    • 2

      设函数[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex] 和 [tex=0.5x1.0]wLRBXo571ziKptAIyBBTRQ==[/tex]都在区间 [tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]上一致连续(1)证明 [tex=1.786x1.214]JW0p1n1bbLVK7ufJY2+wzA==[/tex]在[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex] 上一致连续;

    • 3

      6.设[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]为区间[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]上的单调函数,证明:若[tex=2.071x1.214]uZALtAU1binRI5TJxsGXbiEQukpWazitXMwcS5eDdtY=[/tex]为[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]的间断点,则[tex=0.929x1.0]tstbm1OuPyfyNcfVXQkZzA==[/tex]必是[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]的第一类间断点。

    • 4

      判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]