若函数[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处连续,且[tex=3.714x2.5]MhC0sa4kP8ihnFHLNuEHSyLjcLSXmoVfSIttL48sNz31PM5vq0CvRiy8OVakovv4[/tex]存在,证明:[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处可导。
举一反三
- 设函数[tex=4.071x1.214]a4oRVNeUpH+2qKe44UlhS2r70TIvzUkrHQyfc+dHfEkTGIxXrdvHeUFRVNAlaAV5[/tex]满足可加性,即对任何[tex=3.857x1.214]19u86AX9imxrmfK4fNxHmpllcpg8HMJFCXThG43ZiPg=[/tex],[tex=11.429x1.357]MQTJEpfFyNflorqirawNMvJRMQ6Q4OjD4ZR88pCNz8r0EpwdEAvn1EqfEell78Z7Jj1reNDv5ssFtbRipfxbC5jKcmoRRUNS/3Yq1HRJ/L4=[/tex],并且[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处连续,证明:[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=0.929x1.0]56hApSzAggyB8sjmsuaFgA==[/tex]上连续
- 设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]连续,且[tex=8.071x2.5]MhC0sa4kP8ihnFHLNuEHSyLjcLSXmoVfSIttL48sNz2jDfYw2Om/mx4R1lAJapTy[/tex],则 未知类型:{'options': ['[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处导且[tex=4.0x1.429]wUVMXZAHcY+7Hdyw+nhnNA==[/tex]', '[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处取极小值', '[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处取极大值', '[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处不可导'], 'type': 102}
- 已知[tex=10.714x2.429]93cVZGWw3lMgVkyi6VSoKvF62qMgKebJiVvLBeXreapqI2Y/nqG7ef45zO5v28Guj4GTupR01oxpM8UMyF1NztrFUBCJQc85a/X1R2ae+2Q=[/tex]证明[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处连续,并讨论[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处的可导性.
- 设[tex=3.714x1.357]1wcc6vqE76k/eJ2Xobhi2g==[/tex],若[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上恒不为0,则[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上恒为正(或负)
- 若f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0及存在c,使f(c)>0(a<c<b),证明:在(a,b)内必存在[tex=0.5x1.214]qqpHxP43oSTaBTohjVBA4g==[/tex],使f''([tex=0.5x1.214]qqpHxP43oSTaBTohjVBA4g==[/tex])<0.