• 2022-06-14
    求下列二次曲面的相互垂直共轭的主方向及其共轭的主径面.[p=align:center][tex=7.357x1.429]2ViEDPmdsricTSUt2Du+xv7cn0SxCFyAmV2pmLG7Ifc=[/tex]
  • 解   [tex=0.786x1.0]oUj8d/M62YmUFhlRzlrJ/Q==[/tex] 对应的矩阵为 [tex=11.357x8.929]3BT1BgBZQ5uJXxD5dg+w2yCMREz4t9tN884klarMsqd/ERQKV7ROBWDub6ZAVe/NXNtoLjSA3nRHILatJB3/RpmwbmW4anqcG4MrCidWBDLMIvMqYadOQvAdEFwvIF592fiG9HGlX4+BaJe7aZY4JwCvYuypEh2DhGEHSspi8Br8Y8dLsKZ1vZFKjTtdnBnOQ8ehIkXsG4G2JpyhFZU6akSsEYCqdZXwStbS+tFSQRZ5ZcFg18WakoNIG6QMX47i[/tex].二次项对应矩阵 [tex=9.429x7.643]xr10c4JJsIhg7pj145XJY+6ftDZEDMyidEEzMebX6URwEsZqybGI7EGG2bctVX/MSZUAFscjjMHNwrfeY/cbhl4AfBFFl7FH5e08I0e3eKQiQAGWqChztr/wy0l4kqODF+gGTknU0jLcTHGNUfE6c/jS09vWn0YdfeuSBLN5c9RPdi/7bzVqIjo/5KmqziL3BrThfvhH38jdmCWMlpsz5g==[/tex] 的特征值为 [tex=4.786x2.357]9D8p+wtT3KDO4DZrrHJC5fFqbUQcxd8mQFZ69rn1nhE=[/tex] ; 它们分别对应互相垂直的主方向为[p=align:center][tex=14.5x3.929]jcCMHflCR8OS9TosV6N5vMWRI7iBnNu5h88kQf2jck2PWrfU+oU1HzI+rBwGcncF/J5MXsY8ng3J9z5YSfT9w9DoRbVc4GrhU34HJ4A6+yyyOJ1FlNxQjlDPR6LGzMg+4FFP+dwGSdv7RQbopCfvojDMIiZnBxgvvspV0cnMysz3YONusVOYKky/bM8j04j0x/bUNxzNTR3OxnNk5kCVmpWb80KdJgNcL9Iozyk3LNM=[/tex];对应的共轭主径面为[p=align:center][tex=4.357x1.214]gsoz8PYMZapRFmj7TmGFkaNYplghGM/6B3OVnYFqLrE=[/tex], [tex=6.071x1.214]82nCXf9jWFhdeHEZDLzoIKfqJI3lp25mm1bkKdLZ15g=[/tex], [tex=5.571x1.214]r60c2LlgtT1EjwU7tE/GnRE+QgnIVCh5/VphYFOz8b8=[/tex].

    内容

    • 0

      求下列二阶线性常系数齐次方程的解:[p=align:center][tex=8.0x1.357]2zBbUOo3bhePzpMRrvNCs7gSdfVUs98Vol+ApOigTiBvYFOdYFrzmwDZUzRK47kp[/tex]

    • 1

      求曲面 [tex=5.214x1.429]GCSyQi3ZWFf3xyiB0BDGc1j/mB1Ex2IFd7nySp5PbeU=[/tex] 的奇向; 证明 [tex=5.286x1.286]0gjza8b6pAWpIGWshr5Vp4tPxo1hC3OQzZZ/KnX3XJ8=[/tex] 为非奇渐近方向, 并求其共轭直径面.

    • 2

      求下列集合的基数.[p=align:center][tex=8.571x1.357]/jyxuWdRmCaD2gIzWUCn0NcZgNqXgsrp1zIjgThFH6o=[/tex].

    • 3

      求下列集合的基数.[p=align:center][tex=7.143x1.357]fSs+0ueYSF2NGxqlxqYOVtrEK72s200N1Ricevd6TBw=[/tex].

    • 4

      求下列二阶线性常系数齐次方程的解:[p=align:center][tex=7.714x1.357]zQQc1Obsw/VQuP1ecEmzPeXKHeBUMi5aGr0gQkXKNYBsHlxZAkcQ4JXmstFAjWCY[/tex]