举一反三
- 证明如果函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]和[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]使得[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是[tex=3.143x1.357]ZuRtT8Wk+WJPrIgEMh/UFQ==[/tex]的,则[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是[tex=3.429x1.357]pweQz6vYdJSfN1APBJuJ8Q==[/tex]的。
- 如果[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex] 在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上是连续的,几乎在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上每点,[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]之一切导出数都不是负的,而 [tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]至 少有一个导出数取[tex=1.786x1.071]ffZT3HtkPSdNVmi3u4ww7w==[/tex]的点之全体至多是可列的,那末[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex] 是一增加函数.
- 若[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]连续,[tex=12.286x1.429]N1Msqfjd0pQuDNRpRE+PwFnLe713X051CN6T8g/Disy28ONwwqcig3DwgHj+7ryFHt+zs4IvKr2NY/AUjH4Y7Q==[/tex],则[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=2.214x1.357]mpyYBdP7k8056w1o+qOOxw==[/tex]至少有一个零点.
- 证明:如果函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在区间上连续,则函数[tex=2.429x1.357]9cM+yXmMqe9Sxnqa+l2Eqg==[/tex]在同一区间上连续 .
- 设[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]是一个域,证明:在[tex=1.786x1.357]DpXALeWBl8+QhoNGSoieqQ==[/tex]中,一个次数大于0的多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]如果满足[tex=6.714x1.429]KDyX0boGZOlM+etbZfPoiiQiLF0IBxqLIx1hRl0QePRkiq019M1EkAUH7K5K2Mxp[/tex],那么[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]没有重因式。
内容
- 0
证明:若单调有界函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]可取到[tex=1.857x1.357]RATHhMM+aZZTABv/ShIDpw==[/tex],[tex=1.714x1.357]vWo7kUqXgseeDQ/rfab+vQ==[/tex]之间的一切值,则[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=2.214x1.357]mpyYBdP7k8056w1o+qOOxw==[/tex]连续.
- 1
设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在区间[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上可积,证明:函数[tex=7.357x2.643]uYQK6nKkJz0ye+R4MF1A/mAXhrEzMy80yl/ssuA5hkMrouc7XU3U9Ux1coDRcYuk[/tex]在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上连续。
- 2
下列周期函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的周期为[tex=1.071x1.0]cWYnFY7tUlCT6WhMhv7goA==[/tex],试将[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]展开成傅里叶级数,如果[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=3.071x1.357]dI/zQ2dAuab0sI9V1YLd+w==[/tex]上的表达式为:(2)[tex=9.857x1.5]pRJ95vWGjr1f90QgKzUvPeOQo4NAF+TvdpFQUXXdEgWX1T3yQcFbyRAQWVPZ9iHG[/tex]
- 3
设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]连续,且[tex=8.071x2.5]MhC0sa4kP8ihnFHLNuEHSyLjcLSXmoVfSIttL48sNz2jDfYw2Om/mx4R1lAJapTy[/tex],则 未知类型:{'options': ['[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处导且[tex=4.0x1.429]wUVMXZAHcY+7Hdyw+nhnNA==[/tex]', '[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处取极小值', '[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处取极大值', '[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处不可导'], 'type': 102}
- 4
假定[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]、[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]和[tex=1.929x1.357]PF3ys5sCH7xL9V4l3n5Ang==[/tex]为函数,使得[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是[tex=3.429x1.357]pweQz6vYdJSfN1APBJuJ8Q==[/tex]的,[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]是[tex=3.5x1.357]i1h+gXObWOZdoFBEPZ7BbQ==[/tex]的。证明[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是[tex=3.5x1.357]i1h+gXObWOZdoFBEPZ7BbQ==[/tex]的。