证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数,则存在唯一的整数[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]使得[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是[tex=1.857x1.143]e5w+BNfKI9xFH5nCChNqEw==[/tex]和[tex=2.286x1.143]6W89R+WvL61VovDfCOzxwQ==[/tex]之和。
举一反三
- 证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是整数且[tex=1.0x1.214]S08+KKG98HbrAJCN7f6pjg==[/tex]是奇数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数。
- 证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是一个整数且[tex=2.429x1.143]iYaM6mXHRcXGx9kzFAhMgQ==[/tex]是奇数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数。
- 证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是整数而且[tex=2.286x1.357]Y/jX++qwhtd2x9sTxG5NmA==[/tex]是奇数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是偶数。使用归谬法证明
- 证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是整数而且[tex=2.286x1.357]Y/jX++qwhtd2x9sTxG5NmA==[/tex]是奇数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是偶数。使用反证法证明
- 证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是正整数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数当且仅当[tex=2.429x1.143]tskx3yX0bdwl5Z0zahgdLw==[/tex]是奇数。