如果X,Y都是可分的,证明[tex=2.643x1.143]am8134SFdqttKjHv1gTK4g==[/tex]也是可分的。
举一反三
- 若[tex=2.643x1.143]am8134SFdqttKjHv1gTK4g==[/tex]是紧致的,则X,Y都是紧致的。
- 设[tex=5.214x1.214]l2vYijvwphpA0Bdo8olvNhKvOVd4RCELKut0jj6S5qs=[/tex]是连续映射,Y是Hausdorff空间,证明:(1)集合[tex=9.357x1.357]QCqopxinhs+TvVYgLw48vVpO4x/Rie4gzAlmw62rJGM=[/tex]是X的闭子集;(2)如果A是X的稠密子集且[tex=3.714x1.357]fo4X83uQk0aLKgSpBjpSMw8oj58YdJ5bCiu5d4gfWQqZvgjwV7CYEcyqXJHmRmoq[/tex],则f=g。
- 证明实数下限拓扑空间[tex=1.0x1.214]D5D0Y9P5e3bSjuDLBr9HCw==[/tex]是一个可分空间。(这也是一个不满足第二可数性公理的可分空间的例子。)
- 证明F(X)的可分性
- 设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.786x1.0]9Zhj9WJRAwEw/9RNycpEcw==[/tex]是两个拓扑空间,[tex=3.929x1.214]QMdjVDLE7+KCtqQUHHExMuOahKiPzLRrtzSIbjGFDt4=[/tex]是一个连续映射。证明:如果[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是一个可分空间。则[tex=2.143x1.357]xJaoe4pZjHAOnCWvdJIScg==[/tex]也是可分的。(这说明可分性是一个连续映射所保持的性质,并且由此可见,它是一个拓扑不 变性质,可商性质。)