• 2022-05-28
    设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.786x1.0]9Zhj9WJRAwEw/9RNycpEcw==[/tex]是两个拓扑空间,[tex=3.929x1.214]QMdjVDLE7+KCtqQUHHExMuOahKiPzLRrtzSIbjGFDt4=[/tex]是一个连续映射。证明:如果[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是一个可分空间。则[tex=2.143x1.357]xJaoe4pZjHAOnCWvdJIScg==[/tex]也是可分的。(这说明可分性是一个连续映射所保持的性质,并且由此可见,它是一个拓扑不 变性质,可商性质。)
  • 举一反三