假设某消费者的均衡如图 3-6 所示。其中, 横轴 [tex=2.0x1.286]QYmlkkOk7gPGCGLA/FPmOA==[/tex] 和纵轴 [tex=2.0x1.286]OvCCp2S3MTwVwuwuk/Hqdw==[/tex] 分别表示商品 1 和商品 2 的数量, 线段 [tex=1.571x1.286]aR1a8Eu3rZLX3flcxLOVFw==[/tex] 为消费者的预算线, 曲线 [tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex] 为消费者的无差异曲线, [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex] 点为效用最大化的均衡点。已知商品 1 的价格 [tex=2.857x1.286]nNdqhQBSa0iHntnC7oWJAA==[/tex] 元。[br][/br](1) 求消费者的收入;[br][/br](2) 求商品 2 的价格 [tex=1.071x1.286]MXGlv89djB6Gq/oJiLE/Vg==[/tex];[br][/br](3) 写出预算线方程;[br][/br](4) 求预算线的斜率;[br][/br](5) 求 [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex] 点的 [tex=3.214x1.286]WW0aXbMn+2Lwqr+8RE3jlg==[/tex] 的值。[br][/br][img=375x229]17f4eb147afd3be.png[/img]
举一反三
- 假设某消费者的均衡已知。其中, 横轴 [tex=2.0x1.214]1z+RlmI/5b1nMm2HpvrdlA==[/tex] 和纵轴 [tex=1.643x1.214]h6fWc/zkKbmsSZWhmiLTnJ2A72m5TJo5ZixIIKwzlh4=[/tex], 分别表示商品 1 和商品 2 的数量, 线段 [tex=1.5x1.0]osX852S+wV8CwpEm4xtoUQ==[/tex] 为 消费者的预算线, 曲线 [tex=0.786x1.0]nvkkHKay2Rr0LhbONTyadw==[/tex]为消费者的无差异曲线,[tex=0.714x1.0]gsOwdEQSMjTWLUl/GNSfTw==[/tex] 点为效 用最大化的均衡点。已知商品 1 的价格 [tex=2.357x1.214]XpSFK3OfgBEgwVRzyhkOVj2I3gLzO4X0Al94PRKePBQ=[/tex] 元。(1) 求消费者的收入;(2) 求上品的价格[tex=1.071x1.214]aIqCZYkTEJAcBZX9jlvR+7c7awTlY4dZ7KVwzcrB4OQ=[/tex];(3) 写出预算线的方程;求预算线的斜率;
- 假设某消费者的均衡已知。其中, 横轴 [tex=2.0x1.214]1z+RlmI/5b1nMm2HpvrdlA==[/tex] 和纵轴 [tex=1.643x1.214]h6fWc/zkKbmsSZWhmiLTnJ2A72m5TJo5ZixIIKwzlh4=[/tex], 分别表示商品 1 和商品 2 的数量, 线段 [tex=1.5x1.0]osX852S+wV8CwpEm4xtoUQ==[/tex] 为 消费者的预算线, 曲线 [tex=0.786x1.0]nvkkHKay2Rr0LhbONTyadw==[/tex]为消费者的无差异曲线,[tex=0.714x1.0]gsOwdEQSMjTWLUl/GNSfTw==[/tex] 点为效 用最大化的均衡点。已知商品 1 的价格 [tex=2.357x1.214]XpSFK3OfgBEgwVRzyhkOVj2I3gLzO4X0Al94PRKePBQ=[/tex] 元。(1) 求消费者的收入;(2) 求上品的价格[tex=1.071x1.214]aIqCZYkTEJAcBZX9jlvR+7c7awTlY4dZ7KVwzcrB4OQ=[/tex];(3) 写出预算线的方程;(4) 求预算线的斜率;求 [tex=0.714x1.0]gsOwdEQSMjTWLUl/GNSfTw==[/tex]点的 [tex=2.929x1.214]JPRFPz2uS+rd7MwqipmmH0bKfWpThEoT+UgS7G05ytE=[/tex]的值。
- 假设某消费者的均衡如图(即教材中第 96 页的图 3一22)所示。其中, 横轴 [tex=2.0x1.214]1z+RlmI/5b1nMm2HpvrdlA==[/tex] 和纵轴 [tex=2.0x1.214]/3WIIsVE+1oFqckAJVfbBA==[/tex] 分别表示商品 1 和商品 2 的数量, 线段 AB 为消费者的预算线, 曲线 U 为消费者的无差异曲线, E 点为效用最大化的均衡点。已知商品 1 的价格 [tex=2.857x1.214]KH7SSvhaiZMHuoCwp+HABQ==[/tex] 元。求商品 2 的价格 [tex=1.0x1.214]X/bsauxa6QmmbP44POFPqQ==[/tex] 。[img=361x219]17b0eefc50a98ee.png[/img]
- 假设某消费者的均衡已知。其中, 横轴 [tex=2.0x1.214]1z+RlmI/5b1nMm2HpvrdlA==[/tex] 和纵轴 [tex=1.643x1.214]h6fWc/zkKbmsSZWhmiLTnJ2A72m5TJo5ZixIIKwzlh4=[/tex], 分别表示商品 1 和商品 2 的数量, 线段 [tex=1.5x1.0]osX852S+wV8CwpEm4xtoUQ==[/tex] 为 消费者的预算线, 曲线 [tex=0.786x1.0]nvkkHKay2Rr0LhbONTyadw==[/tex]为消费者的无差异曲线,[tex=0.714x1.0]gsOwdEQSMjTWLUl/GNSfTw==[/tex] 点为效 用最大化的均衡点。已知商品 1 的价格 [tex=2.357x1.214]XpSFK3OfgBEgwVRzyhkOVj2I3gLzO4X0Al94PRKePBQ=[/tex] 元。求消费者的收入;
- 产品[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]是互补品。需求函数;[br][/br]$Q_{X}=640-4 P_{X}-P_{Y}, \quad Q_{Y}=\frac{1}{2} Q_{X}-\frac{1}{2} P_{Y}$\ \假定两者短期供给是固定的:[br][/br][tex=7.571x1.214]CfZnuLHqwTFF3JM+8Dj0b8jBQ/cIxAsLu6pTzTLTHBE=[/tex]求:这两种产品的均衡价格为多少?