未知类型:{'options': ['[tex=0.786x2.357]QlPm3V9rFuOdzBsYBO6leA==[/tex]', '[tex=0.786x2.357]W92h230kXzjcNy6rNu2lvg==[/tex]', '[tex=0.786x2.357]EmXtIFLQ3ZVIEqOulty/cg==[/tex]', '[tex=1.286x2.357]JNtR09DXgDBPHQLo5snjJQ==[/tex]', '[tex=0.786x2.357]DzvRlb+Bk8OBWBvlmRnA6A==[/tex]'], 'type': 102}
举一反三
- 箱中装有 6 个球,其中红球 1 个,白球 2 个,黑球 3 个. 现从箱中随机地取出 2 个球,设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为取出的红球个数, [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 为取出的白球个数.求[tex=4.357x1.357]i+DVPOZZfbtwzlk7qK4ILswxUyhq/D0S0zlG9E3ZL0o=[/tex]
- 向单位圆 [tex=4.5x1.429]K51sNo0ADCigsL0F94/D5g==[/tex] 内随机地投 3 个点,则 3 个点中恰有 2 个点落在第一象限内的概率为 未知类型:{'options': ['[tex=1.286x2.357]es7qfL5TTFT5io4LfbcRqA==[/tex]', '[tex=1.286x2.357]i82O5LCpSSCIEGRGBVKNTg==[/tex]', '[tex=1.286x2.357]bxQGvEYKwlK4BzMT5mmTOw==[/tex]', '[tex=0.786x2.357]qN1Bc71gE0rPfLU5z8e1tQ==[/tex]'], 'type': 102}
- 口袋中装有[tex=2.429x1.143]u5vL1XJij17TeRjhnfCE5Q==[/tex]个白球、[tex=1.143x1.0]oTcZ8bPOd5+p8E1UHN7wXA==[/tex]个黑球,一次取出[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个球,发现都是同一颜色的球,求它们都是黑球的概率.
- 盒中有 3 个黑球、2 个白球、2个红球,从中任取 4 个球,以 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 分别表示取到黑球与白球的个数,求 [tex=3.857x1.357]YbF2ohlyA5KynPPilUI/TA==[/tex] .
- .盒中有 7 个球,其中 4 个白球,3 个黑球,从中任抽 3 个球,求抽到白球数[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望[tex=2.357x1.357]y0JP40XwxAEl4j7GgRfsFw==[/tex]和方差[tex=2.5x1.357]NiX30mld6g1YWcQAK1BcgQ==[/tex]。
内容
- 0
盒中有 5 个球,其中有 3 个白球,2 个黑球,从中任取 2 个球,求:白球数 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的期望和方差.
- 1
三个箱子中,第一箱装有[tex=0.5x1.0]2IRxdDa5OUp8cccgqlpdUA==[/tex]个黑球[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]个白球,第二箱装有[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]个黑球[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]个白球,第三箱装有[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]个黑球[tex=0.5x1.0]swhA5SpCD6lPteGlwRbm9g==[/tex]个白球。现任取一箱并从该箱中任取一球,试求:取出的球是白球的概率
- 2
掷一枚均匀的硬币若干次,当正面向上次数大于反面向上次数时停止,则在4 次之内停止的概率为 未知类型:{'options': ['[tex=0.786x2.357]6R4pEV5747OCL4Nczzjq0w==[/tex]', '[tex=0.786x2.357]W92h230kXzjcNy6rNu2lvg==[/tex]', '[tex=0.786x2.357]DzvRlb+Bk8OBWBvlmRnA6A==[/tex]', '[tex=1.286x2.357]TRYQD7G5PMB0dWwMqp+6CA==[/tex]', '[tex=1.286x2.357]Lg9ldR/MVOcpHxduLP4PgA==[/tex]'], 'type': 102}
- 3
口袋中 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 个白球, [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 个黑球和 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个红球,现从中一个一个不返回地取球. 试证白球比黑球出现得早的 概率为 [tex=3.571x1.357]rC4jCu84NpROucXpRq3ExQ==[/tex], 与 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 无关.
- 4
有 3 个箱子,第 [tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex] 个箱子中有 [tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex] 个白球, [tex=1.643x1.143]zGodLqPUR75EQYPmJNszZw==[/tex] 个黑球 [tex=4.357x1.357]8LCNLSudzW9COZpucBc+PA==[/tex].今从每个箱子中都任取一球,以 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 表示取出的 3 个球中白球个数, 则 [tex=2.357x1.0]joG/slU8FuzguPbLVKxXAA==[/tex][input=type:blank,size:6][/input],[tex=2.5x1.0]ocNvBfIQev22GSIbxdxiAA==[/tex][input=type:blank,size:6][/input].